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Abstract

A celebrated result of H̊astad established that, for any constant ε > 0, it is NP-hard
to find an assignment satisfying a (1/|G |+ ε)-fraction of the constraints of a given 3-LIN
instance over an Abelian group G even if one is promised that an assignment satisfying
a (1 − ε)-fraction of the constraints exists. Engebretsen, Holmerin, and Russell showed
the same result for 3-LIN instances over any finite (not necessarily Abelian) group. In
other words, for almost-satisfiable instances of 3-LIN the random assignment achieves an
optimal approximation guarantee. We prove that the random assignment algorithm is
still best possible under a stronger promise that the 3-LIN instance is almost satisfiable
over an arbitrarily more restrictive group.

1 Introduction

The PCP theorem [AS98, ALM+98, Din07] is one of the jewels of computational complexity
and theoretical computer science more broadly [AB09]. One of its equivalent statements is as
follows: The maximum number of simultaneously satisfiable constraints of a Constraint Sat-
isfaction Problem, or CSP for short, is NP-hard to approximate within some constant factor.
That is, while NP-hardness of CSPs means that it is NP-hard to distinguish instances that are
satisfiable from those that are unsatisfiable, the PCP theorem shows that there is an absolute
constant α < 1 such that it is NP-hard to distinguish satisfiable CSP instances from those
in which strictly fewer than an α-fraction of the constraints can be simultaneously satisfied.
Thus it is NP-hard to find an assignment that satisfies an α-fraction of the constraints even
if one is promised that a satisfying assignment exists. For some CSPs, as we shall see shortly,
the optimal value of α is known.

A classic example of a CSP is 3-SAT, the satisfiability problem of CNF-formulas in which
each clause contains 3 literals. The random assignment gives a method to find an assignment
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that satisfies a 7/8-fraction of the clauses. H̊astad famously showed that this is optimal in
the following sense: For any constant ε > 0, it is NP-hard to find an assignment satisfying a
(7/8 + ε)-fraction of the clauses of a 3-SAT instance even if one is promised that a satisfying
assignment exists [H̊as01].

Another classic CSP is 3-LIN, the problem of solving linear equations in 3 variables over
the Boolean domain {0, 1}. If all equations can be satisfied simultaneously then a satisfying
assignment can be found in polynomial time by Gaussian elimination. What can be done
if no satisfying assignment exists? As for 3-SAT, the random assignment gives a method
to find a somewhat satisfying assignment, namely one that satisfies a 1/2-fraction of the
constraints. As it turns out, this is best possible even for instances of 3-LIN that are almost
satisfiable. In detail, H̊astad showed that for any constant ε > 0, it is NP-hard to find an
assignment satisfying a (1/2 + ε)-fraction of the constraints of a 3-LIN instance even if one
is promised that an assignment satisfying a (1− ε)-fraction of the constraints exists. In fact,
H̊astad established optimal inapproximability results for 3-LIN over any finite Abelian group,
not just {0, 1}. This result was later extended by Engebretsen, Holmerin, and Russell to all
finite groups [EHR04]. Since these foundational works, Guruswami and Raghavendra [GR09]
showed NP-hardness of finding a barely satisfying assignment for a 3-LIN instance over the
reals (and thus also over the integers) even if a nearly satisfying assignment is promised to
exist over the integers. The same result was later established for 2-LIN for large enough cyclic
groups [OWZ15]. Khot and Moshkovitz [KM13] studied inapproximability of 3-LIN over the
reals.

In this work, we strengthen the optimal inapproximability results for 3-LIN over finite
groups by establishing NP-hardness of beating the random assignment threshold even if the
instance is almost satisfiable in an arbitrarily more restrictive setting. Formally, this is cap-
tured by fixing (not one but) two groups and a homomorphism between them, following the
framework of promise CSPs [AGH17, BBKO21]. In detail, (decision) promise CSPs [BBKO21]
can be seen as a qualitative form of approximation: Each constraint comes in two forms, a
strong one and a weak one. The promise is that there is a solution satisfying all constraints in
the strong form while the (potentially easier) goal is to find a solution satisfying all constraints
in the weak form. An example of a strong vs. weak constraint on the same, say Boolean,
domain is 1-in-3 vs NAE, where the former is {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and the latter is
{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}. NAE is weaker as the relation contains
more tuples. While these two constraint relations capture the well-known NP-hard problems
of 1-in-3-SAT and Not-All-Equal-SAT respectively [Sch78], finding an NAE-assignment turns
out to be doable in polynomial time under the promise that a 1-in-3-assignment exists [BG21]!
For constraints on different domains, the notion of strong vs. weak constraint is captured by
a homomorphism between the (sets of all) constraint relations; in the example above, the
homomorphism is just the identity function. The exact solvability of 3-LIN in the promise
setting was resolved in [LŽ24].

Recent work of Barto et al. [BBK+24] considered (quantitative) approximation of promise
CSPs. In the context of 3-LIN, here are two simple examples captured by this framework.
First, let G be a group and H be a subgroup of G . Given an almost-satisfiable system over
the subgroup H , maximise the number of satisfied equations over G . Our results imply that
beating the random assignment over H is NP-hard. In the second example, consider a group
G , a normal subgroup H , and an almost-satisfiable system over G . The goal this time is to
maximise the number of satisfied equations in the system over the quotient G /H . Our results
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show that doing better than the random assignment over G /H is NP-hard. More generally,
going beyond subgroups and quotients of a given group, we fix two groups G1 and G2 and a
group homomorphism φ from a subgroup H1 of G1 to a subgroup H2 of G2 with the property
that φ extends to a group homomorphism from G1 to G2. Given an almost-satisfiable system
of equations over G1 with constants in H1, the goal is to maximise the number of satisfied
equations over G2 where the constants are interpreted in H2 via φ. Our main result establishes
that doing better than the random assignment over H2 is NP-hard, cf. Theorem 1.3. Thus we
give an optimal inapproximability result for a natural and fundamental fragment of promise
CSPs, systems of linear equations.

The general approach for establishing inapproximability of systems of equations, going
back to [H̊as01, EHR04], can be seen as a reduction from another CSP that is hard to
approximate. In this reduction, one initially transforms an instance of the original CSP to
a system of equations of the form xyz = 1. To guarantee the soundness of this reduction,
one needs to show that any assignment that beats the random assignment in the target
system of equations can be transformed into a “good” assignment of the original instance.
To do this it is necessary to rule out vacuous assignments (e.g., the assignment that sends all
variables to the group identity) through a procedure called folding, which introduces constants
in the system of equations. Afterwards, the soundness bounds are shown by performing
Fourier analysis on certain functions derived from the system. Our proof follows this general
approach. The main obstacle to applying the techniques of [EHR04] directly is the fact that
in our setting the constants lie in a proper subgroup of the ambient group, which precludes
us from applying classical folding over groups. Instead, we use a weaker notion of folding.
This, however, implies that in the soundness analysis we have to take care of functions whose
Fourier expansion has non-zero value for the trivial term. To tackle this issue, we consider
the behaviour of irreducible group representations when they are restricted to the subgroup
of constants via Frobenius Reciprocity.

Before formal description of our results, we mention other related work. First, extending
the work from [H̊as01], Austrin, Brown-Cohen, and H̊astad established optimal inapprox-
imability of 3-LIN over Abelian groups with a universal factor graph [ABCH23]. Similarly,
Bhangale and Stankovic established optimal inapproximability of 3-LIN over non-Abelian
groups with a universal factor graph [BS23]. Second, unlike over Abelian groups, for 3-LIN
over non-Abelian groups finding a satisfying assignment is NP-hard even under the promise
that one exists. There is a folklore randomised algorithm for satisfiable 3-LIN instances over
non-Abelian groups (whose approximation factor depends on the group G and is 1/|G | if G is
a so-called perfect group but can beat the naive random assignment for non-perfect groups).
Bhangale and Khot showed that this algorithm is optimal [BK21]. Third, going beyond
3-LIN, building on a long line of work Chan established optimal (up to a constant factor)
NP-hardness for CSPs [Cha16]. There are other works on various inapproximability notions
for CSPs, e.g., [AH13, KTW14a, KTW14b]. Finally, we mention that Khot’s influential
Unique Games Conjecture [Kho02] postulates, in one of its equivalent forms, NP-hardness
of finding a barely satisfying solution to a 2-LIN instance given that an almost-satisfying
assignment exists (for a large enough domain size).

1.1 Preliminaries and notation

We use J·K to denote the Iverson bracket; i.e., JP K is 1 if P is true and 0 otherwise. As usual,
[n] denotes the set {1, 2, . . . , n}.
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We consider matrices whose sets of indices are arbitrary finite sets. Given two finite
sets N and M , an N × M complex matrix A consists of a family of complex numbers Ai,j

indexed by pairs i ∈ N , j ∈ M . Algebraic notions such as matrix product, trace, and
transpose are defined in the natural way. Given an N1 × N2 complex matrix A, and an
M1 ×M2 complex matrix B, the tensor product A⊗B is an (N1 ×M1)× (N2 ×M2) matrix,
where (A ⊗ B)(i,s)(j,t) = Ai,jBs,t for each i ∈ N1, j ∈ N2, s ∈ M1, t ∈ M2. The group of
invertibleN×N complex matrices (equipped with matrix multiplication and matrix inversion)
is denoted by GL(N), and the set of N ×M complex matrices is denoted by CN×M .

A subset H ⊆ G of a group G is called a subgroup of G , denoted by H ≤ G , if H
equipped with the group operation of G forms a group. Given a group G , a subgroup H of
G , and an element g ∈ G , the right coset of H in G by g is the set H g := {hg | h ∈ H }.
The set of right cosets of H in G is denoted by H \G . Let N be a finite set. The N th direct
power of G , denoted by GN , is the group whose elements are N -tuples g ∈ GN of elements
from G , and where the group operation is taken component-wise, i.e., g · h(n) = g(n) · h(n)
for each n ∈ N . If H ≤ G , we define (h ·g)(n) = h ·g(n) for each h ∈ H and g ∈ GN . With
this notation, the notion of coset extends to include the right cosets of H in GN in a natural
way.

A homomorphism from a group G1 to a group G2 is a map φ : G1 → G2 which satisfies that
φ(g ·h) = φ(g) ·φ(h) for every g, h ∈ G1. The domain and image of φ are denoted Dom(φ) and
Im(φ) respectively. Let N be a finite set, Gi groups, i ∈ [2], Hi ≤ Gi, and φ : H1 → H2 be
a homomorphism. We say that a function f : GN

1 → G2 is folded over φ if f(hg) = φ(h)f(g)
for all h ∈ H1 and g ∈ GN

1 . Given an arbitrary function f : GN
1 → G2 and a homomorphism

between subgroups, there is a natural way to construct a folded function that resembles f .
Fix an arbitrary representative from each right coset of H1 in GN

1 . For each g ∈ GN , denote
by g† the representative of H1g, and let hg ∈ H1 be such that g† = hgg. Then the folding
of f over φ (with respect to this choice of representatives) is the map fφ : GN

1 → G2 given by
fφ(g) = φ(h−1

g )f(g†).

Fix a pair of disjoint finite sets D, E, called the label sets, and a subset Π ⊆ ED of
labeling functions. An instance of the Label Cover problem is a bipartite graph with vertex
set U ⊔ V and a labeling function πuv ∈ Π for each edge {u, v} in the graph. The task is to
decide whether there is a pair of assignments hD : U → D, hE : V → E that satisfies all the
constraints, i.e., such that πuv(hD(u)) = hE(v) for each edge {u, v}.

Given additionally a pair of rational constants 0 < s ≤ c ≤ 1, the gap version of this
problem, known as the Gap Label Cover problem with completeness c and soundness s and
denoted GLCD,E(c, s), is the problem of distinguishing instances where a c-fraction of the
constraints can be satisfied from instances where not even an s-fraction of the constraints can
be satisfied.

The hardness of Gap Label Cover with perfect completeness stated below is a consequence
of the PCP theorem [ALM+98, AS98] and the Parallel Repetition Theorem [Raz98].

Theorem 1.1. For every α > 0 there exist finite sets D, E such that GLCD,E(1, α) is
NP-hard.

Fourier Analysis We follow closely [Ter99] for our main definitions and preliminary results.
A representation of a group G is a group homomorphism γ : G → GL(Nγ) for some finite set
Nγ . We call |Nγ | the dimension of γ and write dimγ = |Nγ |. Given a pair of indices i, j ∈ N2

γ ,
γi,j denotes the (i, j)-th entry of γ. The character of a representation γ, denoted by χγ , is its
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trace. The trivial representation, denoted 1, maps all group elements to the number one (i.e.,
the one-dimensional identity matrix). A representation γ is said to be unitary if its image
contains only unitary matrices.

We say that two representations α and β of some group G are equivalent, written α ≃ β,
if there is an invertible Nβ ×Nα complex matrix T such that α(g) = T−1β(g)T for all g ∈ G .
In particular, dimα = dimβ. Similarly, the representation β is said to be a sub-representation
of α if there is an invertible matrix T , such that T−1α(g)T can be written as(

β(g) ∗
0 ∗

)
for all g ∈ G . The representation β is said to be irreducible if all its sub-representations
are equivalent to itself. If β is irreducible, its multiplicity in α is the non-negative integer n
satisfying that α is equivalent to a block diagonal representation with two diagonal blocks
α1, α2, where (1) α1 is another block-diagonal representation consisting of n diagonal blocks
equal to β, and (2) α2 does not have β as a sub-representation.

Given a group G , we use Ĝ to denote some arbitrary and fixed complete set of inequivalent
irreducible unitary representations of G ; such a set exists by, e.g., [Ter99, Proposition 1].

The space L2(G ) is the vector space of complex-valued functions over G , equipped with
the following inner product:1

⟨F,H⟩ = 1

|G |
∑
g∈G

F (g)H(g).

Let G be a group, and let F : G → C be a complex-valued function. Given γ ∈ Ĝ and
i, j ∈ Nγ , the Fourier coefficient F̂ (γi,j) is defined as the product ⟨F, γi,j⟩. The matrix entries

of the representations γ ∈ Ĝ form an orthogonal basis of L2(G ), and allow us to perform
Fourier analysis on this space, as stated in the following theorem [Ter99, Theorem 2].

Theorem 1.2. Let G be a finite group. Then the set

{γi,j | γ ∈ Ĝ , i, j ∈ Nγ}

is an orthogonal basis of L2(G ), and dimγ∥γi,j∥2 = 1 for all γi,j. Moreover, the following
hold:

1. Plancherel’s Theorem: Given F ∈ L2(G ),

∥F∥2 =
∑

γ∈Ĝ ,i,j∈Nγ

dimγ |F̂ (γi,j)|2.

2. Fourier Inversion: Given F ∈ L2(G ),

F (g) =
∑

γ∈Ĝ ,i,j∈Nγ

dimγ F̂ (γi,j)γi,j(g) for all g ∈ G .

1Note the additional normalising factor of 1
|G | compared to [Ter99].
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We also consider Fourier transforms of matrix-valued functions F : G → CNF×NF . Given
γ ∈ Ĝ and indices i, j ∈ Nγ , we define the NF ×NF matrix F̂ (γi,j) as the one whose (s, t)-th

entry is F̂s,t(γi,j) for each s, t ∈ NF . In other words,

F̂ (γi,j) =
1

|G |
∑
g∈G

F (g)γi,j(g).

Let N be a finite set. Given a pair of functions function F,H : G → CN×N , we define
their convolution F ∗H by

(F ∗H)(g) :=
1

|G |
∑
h∈G

F (h)H(h−1g).

We will also need to perform Fourier analysis over powers of the form GD for a given

group G and finite set D. It is possible to identify ĜD with (Ĝ )D [Ter99]. This way, an

element ρ ∈ ĜD is given by a tuple (ρd)d∈D where ρd ∈ Ĝ for each d ∈ D in such a way that

ρ(g) =
⊗
d∈D

ρd(g(d))

for all g ∈ GD. Observe we use superscripts for the “components” of the representation ρ on
the power group GD, rather than subscripts, which we utilise to denote matrix entries. The
degree of ρ, written |ρ|, is the number of indices d ∈ D for which ρd is non-trivial.2

1.2 Results

Let G1,G2 be two groups and φ a group homomorphism with domain Dom(φ) ≤ G1 and
image Im(φ) ≤ G2 that extends to a full homomorphism from G1 to G2. We shall refer to
triples (G1,G2, φ) of this kind as templates. Further, let 0 < s ≤ c ≤ 1 be rational constants.
We consider the problem 3-LIN(G1,G2, φ, c, s) which asks, given a weighted system of linear
equations with exactly three variables in each equation and constants in Dom(φ) that is c-
satisfiable in G1, to decide whether there exists an s-approximation in G2, where the constants
are interpreted through φ.

To be more precise, an instance to 3-LIN(G1,G2, φ, c, s) over a set of variables X is a
weighted systems of linear equations where each equation is of the form

xiyjzk = g

for some x, y, z ∈ X, g ∈ Dom(φ), i, j, k ∈ {−1, 1}, and each equation has a non-negative
rational weight. Without loss of generality, we assume that the weights are normalised, i.e.,
sum up to 1. For t ∈ [2], an assignment f : X → Gt satisfies an equation xiyjzk = g in Gt

if f(x)if(y)jf(z)k = g for t = 1, and f(x)if(y)jf(z)k = φ(g) for t = 2. The task then is to
accept if there is an assignment that satisfies a c-fraction (i.e., a fraction of total weight c)
of equations in G1, and to reject if there is no assignment that satisfies an s-fraction of the
equations in G2. It is easy to verify that, if (G1,G2, φ) is a template and s ≤ c, then the sets
of accept and reject instances are, in fact, disjoint.3

2This quantity is called “weight” in [EHR04, BS23].
33-LIN can be alternatively phrased as a promise constraint satisfaction problem, cf. Section 4 for details.
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3-LIN(G1,G2, φ, c, s) is trivially tractable when Im(φ) = {1}, so we focus on the case where
|Im(φ)| ≥ 2. The main result of this paper is that 3-LIN(G1,G2, φ, 1− ϵ, 1/|Im(φ)|+δ) in NP-
hard for all ϵ, δ > 0 for which the problem is well-defined. This is achieved by a reduction from
the Gap Label Cover problem with perfect completeness and soundness α = δ2/(4κ|G1|κ|G2|4),
where κ = ⌈(log2 δ − 2)/(log2(1− ϵ))⌉.

Theorem 1.3 (Main). Let ϵ, δ be positive constants satisfying 1− ϵ ≥ 1/|Im(φ)|+ δ. Then,
3-LIN(G1,G2, φ, 1− ϵ, 1/|Im(φ)|+ δ) is NP-hard.

The hardness result in Theorem 1.3 is tight for many, but perhaps surprisingly not all,
templates. We call a template (G1,G2, φ) cubic if for every h ∈ Im(φ) there is an element g ∈
G2 satisfying g

3 = h. Theorem 1.3 is tight for cubic templates. Indeed, for these templates, the
random assignment over Im(φ) achieves a 1/|Im(φ)| expected fraction of satisfied equations
(and this can be derandomised, e.g., by the method of conditional expectations).

Theorem 1.4. Let (G1,G2, φ) be a cubic template and 0 < s ≤ c < 1. Then, 3-LIN(G1,G2, φ, c, s)
is tractable if s ≤ 1/|Im(φ)| and NP-hard otherwise.

Let us now turn to non-cubic templates. An equation is unsatisfiable if it is of the form
x3 = h or x−3 = h for some h ∈ Dom(φ) such that g3 ̸= φ(h) for all g ∈ G2. Note that
a template has unsatisfiable equations if and only if it is non-cubic. Note that the naive
random assignment cannot achieve a positive approximation factor in systems of equations
over non-cubic templates since the system could consist exclusively of unsatisfiable equations.
However, there is a simple algorithm for 3-LIN(G1,G2, φ, c, c/|Im(φ)|) that works even for
non-cubic templates, which we describe next.

Given a weighted system of equations over (G1,G2, φ), consider its set of unsatisfiable
equations. Since φ extends to a full homomorphism, if the total weight of the set of unsat-
isfiable equations is more than 1 − c, then the instance cannot be c-satisfiable in G1, hence,
reject. Otherwise, the random assignment over Im(φ) satisfies at least a 1/|Im(φ)|-fraction of
the satisfiable equations over G2, which is at least a c/|Im(φ)|-fraction of the entire system.
It is a simple corollary of Theorem 1.3 that this algorithm is optimal for non-cubic groups,
leading to the following result. Details are deferred to Appendix A.

Theorem 1.5. Let (G1,G2, φ) be a non-cubic template and 0 < s ≤ c < 1. Then, 3-LIN(G1,G2, φ, c, s)
is tractable if s/c ≤ 1/|Im(φ)| and NP-hard otherwise.

The structure of the paper is as follows. The rest of this section gives a sketch of the main
proof: In Section 1.3 we present the reduction from Gap Label Cover to 3-LIN(G1,G2, φ, 1−
ϵ, 1/|Im(φ)|+δ), and in Section 1.4 we give an overview of the techniques used in the analysis
of this reduction and of the main challenges that arise in extending previous work to the
promise setting. The rest of the paper then gives all technical details. In Section 2 we set
the notation and present the necessary technical background on Fourier analysis over non-
Abelian groups. Section 3 is dedicated to the proof of the main result, with the completeness
analysis in Section 3.1 and the soundness analysis in Section 3.2. Finally, in Section 4 we
relate our results to a recent theory of Barto et al. [BBK+24], who developed a systematic
approach to study (in)approximability of promise CSPs, which includes approximability of
promise linear equations, from the viewpoint of universal algebra. In particular, we show that
the proof of Theorem 1.3 implies that the collection of symmetries4 of 3-LIN(G1,G2, φ, 1 −

4called the valued minion of plurimorphisms in [BBK+24].
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ϵ, 1/|Im(φ)| + δ) can be mapped homomorphically to the collection of symmetries of Gap
Label Cover, a condition that, based on the algebraic theory from [BBK+24], is known to
guarantee NP-hardness of the former problem.

1.3 Reduction

For the rest of the section we outline the proof of our main result, Theorem 1.3. From now
on we fix a template (G1,G2, φ), and positive constants δ, ϵ > 0 with 1/|Im(φ)| + δ ≤ 1 − ϵ.
We define H1 = Dom(φ) ≤ G1 and H2 = Im(φ) ≤ G2.

Our proof follows from a reduction from GLCD,E(1, α) where α = δ2/(4κ|G1|κ|G2|4),
κ = ⌈(log2 δ−2)/(log2(1− ϵ))⌉, and D,E are chosen to be large enough so that GLCD,E(1, α)
is NP-hard by the PCP theorem [ALM+98, AS98, Raz98] (cf. Theorem 1.1). This reduction
constructs an instance ΦΣ of 3-LIN(G1,G2, φ, 1 − ϵ, 1/|H2| + δ) for any given instance Σ of
Gap Label Cover as described below.

Let U ⊔V be the underlying vertex set of Σ, D,E be the disjoint sets of labels, and πuv be
the labeling functions. We fix representatives from each right coset in H1\GD

1 and H1\G E
1 .

Given a tuple x in either GD
1 or G E

1 we write x† for the representative of the coset H1x. Let
X = {ub |u ∈ U,b ∈ GD

1 }⊔{va |v ∈ V,a ∈ G E
1 }. Then ΦΣ is the weighted system of equations

over X that contains the equation

va†us1bs1u
s2
cs2 = ga (1)

for each edge {u, v} of Σ, a ∈ G E
1 , b ∈ GD

1 , s1, s2 ∈ {−1, 1}, where c stands for b−1(a◦πuv)−1ν
and ν ∈ GD

1 is a small perturbation factor. The element ga is chosen so that a† = gaa. The
weight of this equation in ΦΣ is the joint probability of the independent events described
in Figure 1.

(1) The edge {u, v} is chosen uniformly at random among all edges of Σ.

(2) The elements a and b are chosen uniformly at random from G E
1 and GD

1 respectively.

(3) The element ν ∈ GD
1 is chosen so that for each d ∈ D, independently, ν(d) = 1G1 with

probability 1− ϵ, and ν(d) is selected uniformly at random from G1 with probability ϵ.

(4) The signs s1, s2 are chosen uniformly at random from {−1, 1}.

Figure 1: The sampling procedure for ΦΣ.

Let us describe assignments of ΦΣ over Gi for i = 1, 2. Formally, an assignment of ΦΣ

over Gi is a map h : X → Gi. Such an assignment can be described by two families of maps
A = (Av)v∈V from G E

1 to Gi and B = (Bu)u∈U from GD
1 to Gi by letting Av(a) = h(va) for all

v ∈ V,a ∈ G E
1 , and Bu(b) = h(ub) = for all u ∈ U,b ∈ GD

1 . It will be more convenient to talk
about the pair (A,B) rather than the map h itself, so we will write ΦGi

Σ (A,B) to refer to the
proportion of equations satisfied by the assignment h. Let us give a more useful expression
for ΦGi

Σ (A,B). When i = 1, we can write

ΦG1
Σ (A,B) = Euv,a,b,

ν,s1,s2

[
JAv(a

†)Bu(b
s1)s1Bu((b

−1(a ◦ πuv)−1ν)s2)s2 = gaK
]
,
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where the expectation is taken over the probabilities described in Figure 1, and we use uv
as a shorthand for an edge {u, v}. Folding the assignments Av over the identity on H1 and
using the fact that (Av)idH1

(a) = g−1
a Av(a

†), we obtain

ΦG1
Σ (A,B) = Euv,a,b,

ν,s1,s2

[
J(Av)idH1

(a)Bu(b
s1)s1Bu((b

−1(a ◦ πuv)−1ν)s2)s2 = 1G1K
]
. (2)

Analogously, when i = 2 and Av, Bu are families of maps to G2, we obtain a similar expression
for ΦG2

Σ (A,B):

ΦG2
Σ (A,B) = Euv,a,b,

ν,s1,s2

[
J(Av)φ(a)Bu(b

s1)s1Bu((b
−1(a ◦ πuv)−1ν)s2)s2 = 1G2K

]
. (3)

That is, a pair of assignments (A,B) satisfies an equation in ΦΣ if and only if the corre-
sponding pair of assignments obtained by folding A (over idH1 and φ respectively) maps the
equation to the group identity (respectively, in G1 and G2). Thus, folding allows us to focus
exclusively on the identity terms in these expectations, which will be useful in the analysis of
the reduction.

Theorem 1.3 follows from our completeness and soundness bounds for ΦΣ, stated in
the next results, using the fact that by Theorem 1.1, there are finite sets D,E such that
GLCD,E(1, α) is NP-hard for the value of α chosen in Theorem 1.7 below. The proofs of the
completeness and soundness bounds can be found in Section 3.1 and Section 3.2 respectively.

Theorem 1.6 (Completeness). Let Σ be a Gap Label Cover instance and ΦΣ be the system
defined in (1). Suppose that Σ is 1-satisfiable. Then ΦΣ is (1− ϵ)-satisfiable in G1.

Theorem 1.7 (Soundness). Let Σ be a Gap Label Cover instance and ΦΣ be the system
defined in (1). Suppose that ΦΣ is (1/|H2| + δ)-satisfiable in G2. Then Σ is α-satisfiable,
where α = δ2/(4κ|G1|κ|G2|4) and κ = ⌈(log2 δ − 2)/(log2(1− ϵ)⌉.

1.4 Proof Outline

The main difficulty in proving the correctness of our reduction lies in showing the soundness
bound (Theorem 1.7). The completeness result (Theorem 1.6) is relatively straightforward
and follows as in [EHR04]. In summary, suppose the Gap Label Cover instance Σ is satisfied
by a pair of assignments hD : U → D, hE : V → E. Then we find families A,B such that
ΦG1
Σ (A,B) ≥ 1−ϵ by letting Av be the hE(v)-th projection and Bu be the hD(u)-th projection

for each v ∈ V, u ∈ U . As usual, the noise introduced by the perturbation factor ν is what
forces us to give up perfect completeness.

The idea behind our soundness analysis has appeared many times in the literature (e.g.,
[H̊as01, EHR04, BK21]), but the approach taken in [EHR04] is the most similar to ours.
Suppose that there are assignments A,B, satisfying

ΦG2
Σ (A,B) ≥ 1

|H2|
+ δ. (4)

In view of (3), this inequality can be understood as a lower bound for the success probability
of the following 3-query dictatorship test: Sample all parameters according to the distribu-
tion shown in Figure 1, and then query the values (Av)φ(a), Bu(b

s1)s1 , and Bu((b
−1(a ◦

πuv)
−1ν)s2)s2 . The test is passed if the product of the three values is the group identity, and
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failed otherwise. The soundness proof consists in showing that (4) implies that the functions
(Av)φ : G E

1 → G2 and Bu : GD
1 → G2 are “close” to dictators (i.e., projections) for each v ∈ V ,

u ∈ U . Then, this fact allows us to find a good solution to the starting Gap Label Cover
instance Σ. Indeed, suppose that for each v ∈ V the map (Av)φ is the projection on the ev-th
coordinate, and for each u ∈ U , the map Bu is the projection on the du-th coordinate. Then
the assignment mapping v to ev and u to du for each v ∈ V, u ∈ U is a good solution for Σ.
However, it is not clear how to extend this simple idea to the case where the maps (Av)φ, Bu

are not projections.
In order to find a good solution for Σ in this general case, we first find suitable maps

γ1, γ2 : G2 → C and analyse γ1 ◦ (Av)φ, γ2 ◦ Bu. Now, using the fact that (Av)φ and Bu are
close to projections, we can prove that choosing the labels e, d for the vertices v, u according
to the “low-degree influence” of the e-th coordinate in γ1 ◦ (Av)φ and the d-th coordinate in
γ2 ◦Bu yields a good randomised assignment of Σ.

This overview so far also applies to the soundness analysis of [EHR04]. Let us give
more detail and highlight the main differences that sets our work apart. The first important
difference has to do with the choice of γ1, γ2. We define γ1 = ωx,y, and γ2 = ωy,z, where ω is
some irreducible representation of G2, and x, y, z are suitable indices in Nω. In [EHR04], the
representation ω is a non-trivial representation chosen so that∣∣E [χω

(
(Av)φ(a)Bu(b

s1)s1Bu((b
−1(a ◦ π)−1ν)s2)s2

)]∣∣ ≥ dimω δ.

Here the expectation is taken over the probability space described in Figure 1, and the
dependence of π on the edge {u, v} is left implicit. In our case, rather than using the Fourier
characters for choosing ω, we consider “penalized characters” χ̃ω. We define χ̃ω : G2 → C
as the map χω − ηω, where the penalty ηω is the multiplicity of the trivial representation in
the restriction ω|H2 . This way, we pick ω ∈ Ĝ2 so that the previous inequality holds after
replacing χω with χ̃ω. Equivalently, we find ω satisfying∣∣E [χω

(
(Av)φ(a)Bu(b

s1)s1Bu((b
−1(a ◦ π)−1ν)s2)s2

)]∣∣ ≥ dimω δ + ηω. (5)

The fact that such ω exists is a consequence of (4) together with
∑

ω∈Ĝ2
dimω ηω = |G2|/|H2|,

which follows from the Frobenius Reciprocity Theorem, as shown in Lemma 2.11. This
additional factor of ηω is crucial to our soundness analysis, as we will see.

Define the map A = ω ◦ (Av)φ and the map B : GD
1 → G2 given by B(b) = Es∈{−1,1}ω ◦

Bu(b
s)s, where s ∈ {−1, 1} is distributed uniformly.5 To show the soundness bound we

consider the Fourier expansions of A and B ∗ B in the expression∣∣trE [A(a)(B ∗ B)((a ◦ π)−1ν)
]∣∣ ,

which is just a rearrangement of the left-hand-side in the previous inequality. More precisely,
we look at the equivalent expression∣∣∣∣∣∣∣trE


 ∑

τ∈ĜE ,s,t∈Nτ

dimτ Â(τs,t)τs,t(a)


 ∑

ρ∈ĜD,i,j∈Nρ

dimρ
̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1ν)



∣∣∣∣∣∣∣ .
(6)

5Observe that the maps A and B depend on the hidden parameters v and u respectively.
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Our goal is to find a bound κ, independent of |D|, |E|, satisfying that the contribution to
this expression of non-trivial representations τ, ρ of degree less than κ is at least dimω δ/2.
This is achieved by controlling the contribution of the trivial term and the contribution of
high-degree terms, as indicated by Lemma 3.1 and Lemma 3.2 respectively. The second main
difference of our soundness analysis compared to [EHR04] is our handling of the trivial term.
In Lemma 3.1 we prove that∣∣∣∣∣∣∣trE

Â(1)

 ∑
ρ∈ĜD,s,t∈Nρ

dimρ
̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1ν)



∣∣∣∣∣∣∣ ≤ ηω.

In the non-promise setting, this bound is not necessary. Roughly, under the stronger
notion of folding used in [EHR04], it is possible to show that Â(1) vanishes. Our weaker
notion of folding does not allow us to prove the same result, but we are still able to leverage
folding to obtain the above bound. This mismatch with [EHR04] is the reason why the extra
ηω term was required in (5). The key insight in the proof of Lemma 3.1 is that if F : G E

1 → G2

is folded over φ, then the trace of ̂(ω ◦ F )(1) is at most ηω in absolute value.
Our analysis of high-degree terms is in the same spirit as previous works that show hard-

ness of approximation in the imperfect completeness setting. In Lemma 3.2 we prove that∣∣∣∣∣∣∣trE

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

×

 ∑
ρ∈ĜD

1 ,|ρ|≥κ

∑
i,j∈Nρ

dimρ
̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1ν)



∣∣∣∣∣∣∣ ≤ (dimω δ)/2

for all κ ≥ (log2 δ − 2)/ log2(1 − ϵ). The essential idea is that the “noise vector” ν has a
smoothing effect that limits the contribution of high-degree terms in (6).

Finally, having established that the contribution of non-trivial terms of degree less than κ
in (6) is at least dimω δ/2, in Lemma 3.3 we give a good randomised strategy to solve Σ. This
strategy assigns the label e ∈ E to v ∈ V and the label d ∈ D to u ∈ U with probabilities

Pr(v 7→ e) =
∑

τ∈ĜE
1 ,τe ̸=1

∑
s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

and

Pr(u 7→ d) =
∑

ρ∈ĜD
1 ,ρd ̸=1

∑
i,j∈Nρ

dimρ

∣∣∣B̂y,z(ρi,j)
∣∣∣2

|ρ|
,

where x, y, z ∈ Nω are suitable indices found in Lemma 3.3. These probabilities are supposed
to capture the influence of the e-th and d-th coordinates on Ax,y = ωx,y ◦ (Av)φ and By,z =
ωy,z ◦ EsBu( ·s)s respectively (compare with the notion of influence in [BK21, AM09]). This
turns out to be a good randomised assignment for Σ. That is,

Euv

[∑
d∈D

Pr(v 7→ πuv(d)) Pr(u 7→ d)

]
≥ α, (7)
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where the expectation is taken uniformly over the edges {u, v} of Σ, and α is the soundness
constant appearing in Theorem 1.7. We are being informal with the usage of the word
“probability” here: the quantities Pr(v 7→ e) and Pr(u 7→ d) may add up to less than 1, but
this is easily fixed by normalising, or by letting our strategy default to the uniform assignment
with some positive probability.

Let us give some more detail. More precisely, Lemma 3.3 shows that truncating our
assignment probabilities to terms of degree less than κ is enough to satisfy this last inequality.
Let ℓ ≥ 0. The probabilities Pr<ℓ(v 7→ e), Pr<ℓ(u 7→ d) are defined the same way as Pr(v 7→ e)
and Pr(u 7→ d) but considering only representations τ, ρ of degree less than ℓ. These modified
probabilities can be understood as the “low-degree influences” of each coordinate in Ax,y

and By,z. With this notation, in Lemma 3.3 we prove that (7) holds after replacing each
assignment probability Pr with its truncated variant Pr<κ. In other words, we prove that

Euv


∑
d∈D

∑
ρ∈ĜD

1 ,ρd ̸=1
|ρ|<κ, i,j∈Nρ

∑
τ∈ĜE

1 ,τπuv(d) ̸=1
|τ |<κ, s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

dimρ

∣∣∣B̂y,z(ρi,j)
∣∣∣2

|ρ|

 ≥ α.

This shows that our proposed strategy produces a good randomised assignment for Σ and
completes the soundness proof.

2 Background

This section gives the necessary background needed in the rest of the paper, with some
repetitions from Section 1.1. We will state several results related to Fourier Analysis over
non-Abelian groups and direct products. All proofs can be found in Appendix B.

Let X and Y be sets. We identify tuples y ∈ Y X with functions y : X → Y , where the
xth component of y is given by y(x). Composition is defined from left to right in a natural
way, i.e., if y ∈ Y X and z ∈ ZY , then z ◦ y ∈ XZ (also denoted just by zy when there is no
ambiguity) is defined by (z ◦ y)(x) = z(y(x)) for each x ∈ X.

Groups and group homomorphisms A group consist of a finite set G equipped with
a binary associative operation · , a distinct element 1 ∈ G which acts as the identity of · ,
and where each element g ∈ G has an inverse under · , denoted by g−1. When there is no
ambiguity, we denote the group product g ·h simply by gh. A group G is Abelian if gh = hg for
every g, h ∈ G . A subset H ⊆ G of a group G is called a subgroup of G , denoted by H ≤ G ,
if H equipped with the group operation of G forms a group. Given a group G , a subgroup H
of G , and an element g ∈ G , the right coset of H in G by g is the set H g := {hg | h ∈ H }.
The set of right cosets of H in G is denoted H \G . Let N be a finite set. The N th direct
power of G , denoted by GN , is the group whose elements are N -tuples g ∈ GN of elements
from G , and where the group operation is taken component-wise, i.e., g · h(n) = g(n) · h(n)
for each n ∈ N . If H ≤ G , we define (h ·g)(n) = h ·g(n) for each h ∈ H and g ∈ GN . With
this notation, the notion of coset extends to include the right cosets of H in GN in a natural
way.

A homomorphism from a group G1 to a group G2 is a map φ : G1 → G2 which satisfies that
φ(g ·h) = φ(g) ·φ(h) for every g, h ∈ G1. The domain and image of φ are denoted Dom(φ) and
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Im(φ) respectively. Let N be a finite set, Gi groups, i ∈ [2], Hi ≤ Gi, and φ : H1 → H2 be
a homomorphism. We say that a function f : GN

1 → G2 is folded over φ if f(hg) = φ(h)f(g)
for all h ∈ H1 and g ∈ GN

1 . Given an arbitrary function f : GN
1 → G2 and a homomorphism

between subgroups, there is a natural way to construct a folded function that resembles f .
Fix an arbitrary representative, from each right coset of H1 in GN

1 . For each g ∈ GN , denote
by g† the representative of H1g, and let hg ∈ H1 be such that g† = hgg. Then the folding
of f over φ (with respect to this choice of representatives) is the map fφ : GN

1 → G2 given by
fφ(g) = φ(h−1

g )f(g†).

Label Cover Fix a pair of disjoint finite sets D, E, called the label sets, and a subset
Π ⊆ ED of labeling functions. An instance of the Label Cover problem is a bipartite graph
with vertex set U ⊔ V and a labeling function πuv ∈ Π for each edge {u, v} in the graph.
The task is to decide whether there is a pair of assignments hD : U → D, hE : V → E that
satisfies all the constraints, i.e., such that πuv(hD(u)) = hE(v) for each edge {u, v}.

Given additionally a pair of rational constants 0 < s ≤ c ≤ 1, the gap version of this
problem, known as the Gap Label Cover problem with completeness c and soundness s and
denoted GLCD,E(c, s), is the problem of distinguishing instances where a c-fraction of the
constraints can be satisfied from instances where not even an s-fraction of the constraints can
be satisfied.

The hardness of Gap Label Cover with perfect completeness stated below is a consequence
of the PCP theorem [ALM+98, AS98] and the Parallel Repetition Theorem [Raz98].

Theorem 1.1. For every α > 0 there exist finite sets D, E such that GLCD,E(1, α) is
NP-hard.

Linear Algebra We consider matrices with generalised index sets for convenience. Given
two finite sets N and M , an N×M complex matrix A consists of a family of complex numbers
Ai,j indexed by i ∈ N , j ∈ M . Matrix operations are defined in the usual way.

Given a matrix A, we write At to denote its transpose, A for its complex conjugate, and A∗

for its Hermitian (i.e., its conjugate transpose). A N ×M matrix is called square if N = M .
A square matrix A is called Hermitian if A = A∗, and is called unitary if its Hermitian is its
inverse. The trace of a matrix A, denoted tr(A), is the sum of its diagonal entries. We denote
by IN the N ×N identity matrix.

Let A be an N1 ×N2 complex matrix and B be an M1 ×M2 complex matrix. The tensor
product A⊗B is a (N1 ×M1)× (N2 ×M2) matrix, where (A⊗B)(i,s)(j,t) = Ai,jBs,t for each
i ∈ N1, j ∈ N2, s ∈ M1, t ∈ M2. We make use of the following linear algebra facts.

Lemma 2.1. Let A,B be N × N complex matrices and C,D be M ×M complex matrices.
Then the following hold.

1. tr(A)tr(C) = tr(A⊗ C).

2. (AB)⊗ (CD) = (A⊗ C)(B ⊗D).

The group of invertible N×N complex matrices (equipped with matrix multiplication and
matrix inversion) is denoted as GL(N), and the set of N ×M complex matrices is denoted
CN×M .
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2.1 Fourier Analysis over non-Abelian Groups

Most of the results and definitions in this subsection can be found in [Ter99].
A representation of a group G is a group homomorphism γ : G → GL(Nγ) for some finite

set Nγ . We call |Nγ | the dimension of γ and write dimγ = |Nγ |. Given a pair of indices
i, j ∈ N2

γ , γi,j denotes the (i, j)-th entry of γ. The character of a representation γ, denoted
by χγ , is its trace. The trivial representation, denoted 1, maps all group elements to the
number one (i.e., the one-dimensional identity matrix).

A representation γ is said to be unitary if its image contains only unitary matrices. That
is, if

γ(g)γ∗(g) = INγ for all g ∈ G .

We say that a function B : G → CN×N is skew-symmetric (or skew-Hermitian) if B(g−1) =
B(g)∗ for all g ∈ G . Note that, by definition, a representation is unitary if and only if it is
skew-symmetric.

Let G be a group and let α and β be representations of G . We say that α and β are
equivalent, written α ≃ β, if there is an invertible Nβ × Nα complex matrix T such that
α(g) = T−1β(g)T for all g ∈ G . In particular, dimα = dimβ. The representation β is said to
be a sub-representation of α if there is an invertible matrix T ∈ Nα×M , where the index set
M is a disjoint union of the form Nβ ⊔ N , such that T−1α(g)T admits the following block
form for all g ∈ G : (

β(g) ∗
0 ∗

)
.

The representation α is said to be irreducible if all its sub-representations are equivalent to
itself.

Definition 2.2. A complete set Ĝ of inequivalent irreducible unitary representations of a
group G is a set of irreducible unitary representations of G that are pairwise inequivalent and
satisfy that any irreducible representation of G is equivalent to a representation in Ĝ .

From now on, given a group G , we use Ĝ to denote some arbitrary and fixed complete set
of inequivalent irreducible unitary representations of G . Note that such a set exists by, e.g.,
[Ter99, Proposition 1].

We define the space L2(G ) as the vector space of complex-valued functions over G ,
equipped with the following inner product:

⟨F,H⟩ = 1

|G |
∑
g∈G

F (g)H(g)

Let G be a group, and let F : G → C be a complex-valued function. Given γ ∈ Ĝ and
i, j ∈ Nγ , the Fourier coefficient F̂ (γi,j) is defined as the product ⟨F, γi,j⟩. The matrix entries

of the representations γ ∈ Ĝ form an orthogonal basis of L2(G ), and allow us to perform
Fourier analysis on this space, as stated in the following theorem [Ter99, Theorem 2].

Theorem 1.2. Let G be a finite group. Then the set

{γi,j | γ ∈ Ĝ , i, j ∈ Nγ}

is an orthogonal basis of L2(G ), and dimγ∥γi,j∥2 = 1 for all γi,j. Moreover, the following
hold:
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1. Plancherel’s Theorem: Given F ∈ L2(G ),

∥F∥2 =
∑

γ∈Ĝ ,i,j∈Nγ

dimγ |F̂ (γi,j)|2.

2. Fourier Inversion: Given F ∈ L2(G ),

F (g) =
∑

γ∈Ĝ ,i,j∈Nγ

dimγ F̂ (γi,j)γi,j(g) for all g ∈ G .

In particular, for each non-trivial irreducible representation γ, and each pair of indices
i, j, the map γi,j is orthogonal to the trivial representation, yielding the following:

Corollary 2.3.
∑

g∈G γi,j(g) = |G |⟨γi,j , 1⟩ = 0 for each non-trivial γ ∈ Ĝ and each i, j ∈ Nγ

.

We also consider Fourier transforms of matrix-valued functions F : G → CNF×NF . Given
γ ∈ Ĝ and indices i, j ∈ Nγ , we define the NF ×NF matrix F̂ (γi,j) as the one whose (s, t)-th

entry is F̂s,t(γi,j) for each s, t ∈ NF . In other words,

F̂ (γi,j) =
1

|G |
∑
g∈G

F (g)γi,j(g).

The following lemma gives an alternative expression for the contribution of a representa-
tion γ ∈ Ĝ to the Fourier series of a matrix-valued function F .

Lemma 2.4. Let F : G → CN×N be a map, γ ∈ Ĝ , and g ∈ G . Then∑
i,j∈Nγ

F̂ (γi,j)γi,j(g) =
1

|G |
∑
h∈G

F (h)χγ(h
−1g).

The following is a well-known fact about sums of characters of irreducible representations.

Lemma 2.5 ([Ter99, Lemma 2]). Let G be a finite group. Then

∑
γ∈Ĝ

dimγ χγ(g) =

{
|G | if g = 1G , and

0 otherwise.

In particular, using that χγ(1G ) = dimγ we obtain that
∑

γ∈Ĝ
dim2

γ = |G |.

Given representations ρ1, . . . , ρk, and non-negative integers n1, . . . , nk, we write n1ρ1 ⊕
· · ·⊕nkρk for the representation γ of G satisfying that for each g ∈ G , γ(g) is a block-diagonal
matrix whose ith diagonal block is itself a block-diagonal matrix consisting of ni blocks of
ρi(g).

Definition 2.6. Let G be a group, and let γ be a representation of G . We say that a
non-negative integer n is the multiplicity of ρ ∈ Ĝ in γ if γ ≃ nρ ⊕ γ′, where γ′ is another
representation of G that does not have ρ as a sub-representation.
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Although it is not obvious from the definition above, the multiplicity of an irreducible
representation in another representation is a well-defined non-negative integer. In fact, the
following facts hold.

Lemma 2.7 ([Ter99, Proposition 2]). Let γ be a representation of G . Then γ ≃
⊕

ρ∈Ĝ
nρρ,

where nρ denotes the multiplicity of ρ in γ for each ρ ∈ Ĝ .

Lemma 2.8 ([Ter99, Proposition 3]). Let γ be a representation of G , and let ρ ∈ Ĝ . Then
the multiplicity of ρ in γ equals both ⟨χρ, χγ⟩ and ⟨χγ , χρ⟩.

We define the right-regular representation of G on H \G , denoted RG ,H , to be the rep-
resentation of G with NRG ,H

= H \G whose entries are defined as follows. Given two cosets
H g1,H g2 and an element g ∈ G , the (H g1,H g2)-entry of RG ,H (g) is 1 if H g1 = H g2g

−1,
and zero otherwise. In other words, RG ,H (g) is the matrix describing the permutation on
the cosets H \G resulting from right-multiplication with g−1. The representation RG ,H is
the representation induced on G by the trivial representation of H . When H is the trivial
subgroup containing just the identity element, we simply write RG for RG ,H . The represen-
tation RG is known as the right-regular representation of G . An application of the Frobenius
Reciprocity Law yields the following result.

Lemma 2.9. Let H ≤ G be groups, and let ρ ∈ Ĝ . Then the multiplicity of ρ in RG ,H is
the same as the multiplicity of the trivial representation in ρ|H .

The following result appears in [Ter99, Lemma 2] for the so-called left-regular represen-
tation, but the same proof also works for our modified statement.

Lemma 2.10. Let G be a group and let RG be the right-regular representation of G . Then
RG ≃

⊕
ρ∈Ĝ

dimρ ρ.

We will also need the following result.

Lemma 2.11. Let H ≤ G be groups. Then∑
ρ∈Ĝ

dimρ⟨χρ, χRG ,H
⟩ = |G |

|H |
.

Let N be a finite set. Given a pair of functions function F,H : G → CN×N , we define
their convolution F ∗H by

(F ∗H)(g) :=
1

|G |
∑
h∈G

F (h)H(h−1g).

The following observation will be useful.

Lemma 2.12. Let F,G : G → CN×N , γ ∈ Ĝ . Let x, y ∈ N , i, j ∈ Nγ. Then,

̂(F ∗G)x,y(γi,j) =
∑
z∈N

∑
k∈Nγ

F̂x,z(γi,k)Ĝz,y(γk,j).
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2.1.1 Fourier Analysis over Direct Products

Theorem 2.13 ([Ter99]). Let G ,H be finite groups, and let Ĝ and Ĥ be complete sets
of inequivalent unitary irreducible representations of G and H respectively. Then the set
{α ⊗ β|α ∈ Ĝ , β ∈ Ĥ } is a complete set of inequivalent unitary irreducible representations
over G × H .

This result allows us to identify ĜD with (Ĝ )D, for a given group G and finite set D. This

way, an element ρ ∈ ĜD is given by a tuple (ρd)d∈D where ρd ∈ Ĝ for each d ∈ D in such a
way that

ρ(g) =
⊗
d∈D

ρd(g(d)),

for all g ∈ GD. Observe we use superscripts for the “components” of the representation ρ on
the power group GD, rather than subscripts, which we utilise to denote matrix entries.

Given a group G , a finite set D, and a representation ρ ∈ ĜD, we write |ρ| to denote the
number of indices d ∈ D for which ρd is non-trivial.6

Let G be a group, E,D finite sets, π : D → E a map, and τ ∈ Ĝ E , ρ ∈ ĜD representations.
We define the unitary representation ρπ of G E by

ρπ(g) =
⊗
e∈E

⊗
d∈π−1(e)

ρd(g(e)).

for all g ∈ G E . Observe that Nρπ = Nρ =
∏

d∈D Nρd . Given indices i = (id)d∈D, j = (jd)d∈D,
we have

ρπi,j(g) =
⊗
e∈E

⊗
d∈π−1(e)

ρdid,jd(g(e)).

We write τ ∼π ρ if for each e ∈ E for which τ e is non-trivial, there is at least one
d ∈ π−1(e) for which ρd is non-trivial.

Lemma 2.14. Let G be a group, E,D finite sets, π : D → E a map, and τ ∈ Ĝ E , ρ ∈ ĜD

representations. Then

1. τ ∼π ρ implies that |τ | ≤ |ρ|.

2. τ ̸∼π ρ implies that ⟨τs,t, ρπi,j⟩GE = 0 for all s, t ∈ Nτ , i, j ∈ Nρ.

In our proofs, we analyse complex-valued functions H over direct products GD of the form
H(g) = Eν [F (g · ν)], where ν is some “random noise tuple”. The following result relates the
Fourier coefficients of F and H in this setting.

Lemma 2.15. Let G be a finite group, D a finite set, and 0 < ϵ < 1 a real number. Let
ν = (νd)d∈D be a random element from GD chosen as follows. Independently for each d ∈ D,
the element νd equals 1G with probability 1 − ϵ, and is picked uniformly at random from G

otherwise. Let F : GD → C and define H(a) := Eν [F (a · ν)]. Then, for each ρ ∈ ĜD and
i, j ∈ Nρ, we have

Ĥ(ρi,j) = (1− ϵ)|ρ|F̂ (ρi,j).

6This quantity is called “weight” in [EHR04, BS23].
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3 Proof of Theorem 1.3

3.1 Completeness

Proof of Theorem 1.6. Let fU : U → D, fV : V → E be assignments satisfying the original
GLC instance Σ - that is to say, these assignments are such that πuv(fU (u)) = fV (v) for each
edge πuv. From these, we construct the assignments Av : G E

1 → G1 and Bu : GD
1 → G1 by

setting Av to be the fV (v)-th projection for each v ∈ V , and Bu to be the fU (u)-th projection
for each u ∈ U . Observe that the projections are folded over idH1 , so Av = (Av)idH1

.

Moreover, note that, for a projection function B : GD → G , b ∈ GD, and s ∈ {s1, s2}, we have
B(bs)s = B(b). Then, for each edge {u, v}, each a ∈ G E

1 , b,ν ∈ GD
1 and c = b−1(a◦πuv)−1ν

we have

(Av(a))idH1
Bu(b

s1)s1Bu(c
s2)s2 = a(fV (v))b(fU (u))b

−1(fU (u))(a ◦ πuv)−1(fU (u))ν(fU (u))

= a(πuv(fU (u)))(a(πuv(fU (u))))
−1ν(fU (u)) = ν(fU (u)).

When all parameters are chosen according to the probabilities in Figure 1, this ex-
pression equals 1G1 with probability at least 1 − ϵ. This is because the probability that a
given coordinate of ν equals 1G1 is at least 1 − ϵ. Therefore, using Equation (2) we obtain
ΦG1
Σ (A,B) ≥ 1− ϵ.

3.2 Soundness

This section is dedicated to the proof of Theorem 1.7. By assumption, there are families A,B
satisfying that ΦG2

Σ (A,B) ≥ 1
|H2| + δ. In other words, using Equation (3),

Euv,a,b,
ν,s1,s2

[
J(Av)φ(a)Bu(b

s1)s1Bu(c
s2)s2 = 1G2K

]
≥ 1

|H2|
+ δ,

where c stands for b−1(a ◦ πuv)
−1ν and the expectation is taken over the probabilities

defined in Figure 1. Our goal is then to construct assignments of the original GLC in-
stance Σ that satisfy at least an α = δ2/(4κ|G1|κ|G2|4)-fraction of its constraints, where κ =
⌈(log2 δ − 2)/(log2(1− ϵ))⌉. Define z := (Av)φ(a)Bu(b

s1)s1Bu(c
s2)s2 . Combining Lemma 2.5

and Lemma 2.11, we obtain

∑
γ∈Ĝ2

(
dimγ χγ(z)− dimγ⟨χγ , χRG2,H2

⟩
)
=

{
|G2| − |G2|

|H2| if z = 1G2

− |G2|
|H2| otherwise.

Then, we have

Euv,a,b
ν,s1,s2

[ ∑
γ∈Ĝ2

dimγ χγ(z)− dimγ⟨χγ , χRG2,H2
⟩
]

=

(
|G2| −

|G2|
|H2|

)
Pr (z = 1G2)−

|G2|
|H2|

Pr (z ̸= 1G2)

≥
(
|G2| −

|G2|
|H2|

)(
1

|H2|
+ δ

)
− |G2|

|H2|

(
1− 1

|H2|
− δ

)
=

(
|G2|
|H2|

− |G2|
|H2|2

+ |G2|δ −
|G2|
|H2|

δ

)
−
(

|G2|
|H2|

− |G2|
|H2|2

− |G2|
|H2|

δ

)
= |G2|δ.
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Hence
Euv,a,b
ν,s1,s2

[ ∑
γ∈Ĝ2

dimγ χγ(z)
]
≥ |G2|δ +

∑
γ∈Ĝ2

dimγ⟨χγ , χRG2,H2
⟩.

Using that |G2| =
∑

γ∈Ĝ2
dim2

γ , by an averaging argument there is some ω ∈ Ĝ2 satisfying∣∣∣∣Euv,a,b
ν,s1,s2

[χω ((Av)φ(a)Bu(b
s1)s1Bu(c

s2)s2))]

∣∣∣∣ ≥ dimω δ + ⟨χω, χRG2,H2
⟩. (8)

Observe that such ω cannot be trivial. Indeed, if ω is trivial, then the left-hand-side of the
above inequality equals 1, whereas the right-hand-side is strictly greater than 1. This is
because ⟨χω, χRG2,H2

⟩ equals the multiplicity of the trivial representation in ω|H , which is
one when ω is trivial itself.

For the rest of this section, we fix such ω ∈ Ĝ2. We define the short-hands

A(a) := ω ◦ (Av)φ(a), B(b) := Es[((ω ◦Bu)(b
s))s], (9)

where a ∈ G E
1 , b ∈ GD

1 , and s is sampled uniformly at random from {−1, 1}. Observe
that A depends on the hidden parameter v, and B depends on u. Using this notation, and
additionally leaving the dependence of π on {u, v} implicit, we can rewrite (8) as∣∣∣Euv,

a,ν

[
tr
(
A(a)(B ∗ B)((a ◦ π)−1ν)

)]∣∣∣ ≥ dimω δ + ⟨χω, χRG2,H2
⟩. (10)

This inequality is the starting point for showing our soundness bound. We briefly describe
the proof strategy for Theorem 1.7. We consider the Fourier series of A and (B ∗ B) in
the left-hand-side of (10). We bound the contribution of terms corresponding to the trivial
representation, and terms corresponding to representations of high degree. This is achieved
in Lemma 3.1 and Lemma 3.2 respectively. Using these results, we show that the contribution
of representations of low degree is bounded away from zero. Finally, using this fact we are
able to construct an assignment to the original GLC instance Σ attaining the desired value.
This is done in Lemma 3.3.

Let us state our main auxiliary results.

Lemma 3.1. Let ω be as in (8) and A and B as in (9). Then∣∣∣E uv
a,ν

[
tr
(
Â(1)(B ∗ B)((a ◦ π)−1ν)

)]∣∣∣ ≤ ⟨χω, χRG2,H2
⟩.

And, in consequence,∣∣∣∣∣∣∣E uv
a,ν

tr

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

 (B ∗ B)((a ◦ π)−1ν)



∣∣∣∣∣∣∣ ≥ dimω δ.

Lemma 3.2. Let ω be as in (8) and A and B as in (9). Then∣∣∣∣∣∣∣Euv,a

tr

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

×

 ∑
ρ∈ĜD

1 ,|ρ|≥κ

∑
i,j∈Nρ

dimρ(1− ϵ)|ρ| ̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1)




∣∣∣∣∣∣∣ ≤ (dimω δ)/2 (11)
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for any κ ≥ (log2 δ − 2)/ log2(1− ϵ).

Lemma 3.3. Let ω be as in (8) and A and B as in (9). Suppose that for some κ > 0, ξ > 0
it holds that∣∣∣∣∣∣∣Euv,a

tr

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

 ×

 ∑
ρ∈ĜD

1 ,|ρ|<κ

∑
i,j∈Nρ

dimρ(1− ϵ)|ρ| ̂(B ∗ B)(ρi,j) ρi,j((a ◦ π)−1)




∣∣∣∣∣∣∣ ≥ ξ.

Then there is an assignment of the original GLC instance satisfying a ξ2κ−1|G1|−κ dim−6
ω -

fraction of the constraints.

Having stated these auxiliary lemmas, we are prepared to prove our soundness result.

Proof of Theorem 1.7. Let ω be as in (8) and A and B as in (9). By Lemma 3.1,∣∣∣∣∣∣∣E uv
a,ν

tr

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

Â(τs,t)τs,t(a)

 (B ∗ B)((a ◦ π)−1ν)



∣∣∣∣∣∣∣ ≥ dimω δ.

Applying the Fourier inversion formula toW (a) = Eν [(B∗B)((a◦π)−1ν)] and using Lemma 2.15,
the above inequality can be rewritten as∣∣∣∣∣∣∣Euv,a

tr

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

 ×

∑
ρ∈ĜD

1

∑
i,j∈Nρ

dimρ(1− ϵ)|ρ| ̂(B ∗ B)(ρi,j) ρi,j((a ◦ π)−1)




∣∣∣∣∣∣∣ ≥ dimω δ.

Applying Lemma 3.2, we obtain∣∣∣∣∣∣∣Euv,a

tr

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

 ×

 ∑
ρ∈ĜD

1 ,|ρ|<κ

∑
i,j∈Nρ

dimρ(1− ϵ)|ρ| ̂(B ∗ B)(ρi,j) ρi,j((a ◦ π)−1)




∣∣∣∣∣∣∣ ≥ dimω δ/2,

where κ = ⌈(log2 δ − 2)/ log2(1− ϵ)⌉. This allows us to apply Lemma 3.3 with ξ = dimω δ/2,
obtaining an assignment of the original GLC instance with value at least δ2/(4κ|G1|κ dim4

ω).
Using that dimω ≤ |G2| we obtain the desired bound.

The rest of the section is dedicated to proving Lemma 3.1, Lemma 3.2, and Lemma 3.3.
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Proof of Lemma 3.1. The second part of the statement follows from the first, by applying the
Fourier inversion formula to A(a) in (10). We prove the first part of the statement.

The following chain of identities holds:

Â(1) =
1

|G E
1 |

∑
g∈GE

1

A(g) =
1

|G E
1 |

∑
g∈GE

1

ω ◦ (Av)φ(g) =
1

|G E
1 |

1

|H1|
∑
g∈GE

1

∑
h∈H1

ω ◦ (Av)φ(hg)

=
1

|G E
1 |

1

|H1|
∑
g∈GE

1

∑
h∈H1

ω ◦ φ(h) · ω ◦ (Av)φ(g)

=
1

|G E
1 |

1

|H1|
∑
g∈GE

1

∑
h∈H2

∑
h′∈H1,φ(h′)=h

ω(h) · ω ◦ (Av)φ(g)

=
1

|G E
1 |

1

|H1|
∑
g∈GE

1

∑
h∈H2

|Ker(φ)|ω(h) · ω ◦ (Av)φ(g)

=
1

|G E
1 |

1

|H2|
∑
g∈GE

1

∑
h∈H2

ω(h) · ω ◦ (Av)φ(g)

=

 1

|H2|
∑
h∈H2

ω(h)

 1

|G E
1 |

∑
g∈GE

1

A(g).

Here the fourth equality uses the fact that (Av)φ is folded over φ and ω is a homomorphism.
The second-to-last uses the fact that |H2| = |H1|/|Ker(φ)|. Let us analyse the matrix
F = 1

|H2|
∑

h∈H2
ω(h). Firstly, observe that F is Hermitian. Indeed, using the fact that ω is

a unitary representation we obtain

F ∗ =
1

|H2|
∑
h∈H2

ω∗(h) =
1

|H2|
∑
h∈H2

ω(h−1) = F.

Because F is Hermitian, there must be a unitary matrix U and a diagonal matrix D satisfying
F = U∗DU . We show that F ’s eigenvalues are 1, with multiplicity ⟨χω, χRG2,H2

⟩, and 0, with

multiplicity dimω −⟨χω, χRG2,H2
⟩. For each ρ ∈ Ĥ2, let nρ be the multiplicity of ρ in ω|H2 .

By Lemma 2.7, there is an invertible matrix T such that ω(h) = T−1(
⊕

ρ∈Ĥ2
nρρ(h))T for all

h ∈ H2. This way,

F = T−1

⊕
ρ∈Ĥ2

nρ
1

|H2|
∑
h∈H2

ρ(h)

T.

By Corollary 2.3, the matrix 1
|H2|

∑
h∈H2

ρ(h) is the zero matrix when ρ ∈ Ĥ2 is non-trivial,

and equals 1 (the one-dimensional identity matrix) when ρ is the trivial representation. Hence,(⊕
ρ∈Ĥ2

nρ
1

H2

∑
h∈H2

ρ(h)
)
is a diagonal matrix containing n1 ones across the diagonal, and

dω − n1 zeroes. By Lemma 2.9, we know that n1 = ⟨χω, χRG2,H2
⟩, showing the claim.

Our two claims together show that there is a unitary matrix U such that F = U∗DU ,
where D is the diagonal matrix whose first ⟨χω, χRG2,H2

⟩ diagonal entries are ones and the
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rest are zeroes. Now we are prepared to prove the lemma. We have that∣∣∣E uv
a,ν

[
tr
(
Â(1)(B ∗ B)((a ◦ π)−1ν)

)]∣∣∣ = ∣∣∣∣E uv,a
b,g,ν

[
tr
(
U∗DUA(g)B(b)B(b−1(a ◦ π)−1ν)

)]∣∣∣∣
=

∣∣∣∣E uv,a
b,g,ν

[
tr
(
D
(
UA(g)B(b)B(b−1(a ◦ π)−1ν)U∗

))]∣∣∣∣ .
Inside the last trace operator we have the product DM , where

M = UA(g)B(b)B(b−1(a ◦ π)−1ν)U∗.

The matrix M is a product of unitary matrices, so it is itself a unitary matrix. The trace of
DM is the sum of the first ⟨χω, χRG2,H2

⟩ diagonal elements of M , which have absolute value
at most 1, so |tr(DM)| ≤ ⟨χω, χRG2,H2

⟩. This proves the result.

The following property of B will be useful in the proof of Lemma 3.2.

Lemma 3.4. Let G1,G2 be finite groups and γ ∈ Ĝ2 be a unitary representation. Then, for
every function F : G1 → G2, the function H defined by H(g) = Es∈{−1,1}((γ ◦ F )(gs))s is
skew-symmetric.

Proof. For every g ∈ G1,

H(g−1) = Es∈{−1,1}((γ ◦ F )(g−s))s

=
1

2
(γ ◦ F )(g−1) +

1

2
((γ ◦ F )(g))−1

=
1

2
(((γ ◦ F )(g−1))−1)∗ +

1

2
((γ ◦ F )(g))∗

= (Es∈{−1,1}((γ ◦ F )(gs))s)∗ = H(g)∗.

Proof of Lemma 3.2. We state two auxiliary facts first. We shall show that for any ρ ∈ ĜD
1

tr

∑
i∈Nρ

̂(B ∗ B)(ρi,i)

 ≥ 0, (12)

meaning that the left-hand-side is a real non-negative number. We shall also show that for

any g,a ∈ G E
1 and ρ ∈ ĜD

1 , it holds that

|tr (C(g,a, ρ))| ≤ tr

∑
i∈Nρ

̂(B ∗ B)(ρi,i)

 , (13)

where the matrix C(g,a, ρ) is defined as

A(g)
∑

i,j∈Nρ

̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1).
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Let us prove (11) assuming these facts. First, observe that∑
τ∈ĜE

2 ,τ ̸=1
s,t∈Nτ

dimτ Â(τs,t)τs,t(a) = A(a)− 1

|G E
1 |

∑
g∈GE

1

A(g).

Hence,∣∣∣∣∣∣∣∣∣∣
tr


 ∑

τ∈ĜE
2 ,τ ̸=1

s,t∈Nτ

dimτ Â(τs,t)τs,t(a)




∑
ρ∈ĜD

1 ,|ρ|≥κ
i,j∈Nρ

dimρ(1− ϵ)|ρ| ̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1)



∣∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣
tr


∑
ρ∈ĜD

1
|ρ|≥κ

dimρ(1− ϵ)|ρ|C(a,a, ρ))


∣∣∣∣∣∣∣∣∣∣
+

1

|G E
1 |

∑
g∈GE

1

∣∣∣∣∣∣∣∣∣∣
tr


∑
ρ∈ĜD

1
|ρ|≥κ

dimρ(1− ϵ)|ρ|C(g,a, ρ))


∣∣∣∣∣∣∣∣∣∣

≤ 2tr


∑
ρ∈ĜD

1
|ρ|≥κ

∑
i∈Nρ

dimρ(1− ϵ)|ρ| ̂(B ∗ B)(ρi,i)

 .

By (12), tr
(∑

i∈Nρ
̂(B ∗ B)(ρi,i)

)
is non-negative for any ρ ∈ ĜD, so the last expression is at

most

2(1− ϵ)κtr

∑
ρ∈ĜD

∑
i∈Nρ

dimρ
̂(B ∗ B)(ρi,i)

 = 2(1− ϵ)κtr ((B ∗ B)(1)) ≤ 2(1− ϵ)κ dimω .

Using that κ ≥ (log2 δ − 2)/ log2(1− ϵ), this completes the proof of the result assuming (12)
and (13). Now let us show both of these inequalities. We start with (12). The following chain
of identities holds.

tr

∑
i∈Nρ

̂(B ∗ B)(ρi,i)

 = tr

 1

|GD
1 |

∑
g∈GD

1

(B ∗ B)(g)χρ(g)

 = tr

 1

|GD
1 |

∑
g∈GD

1

(B ∗ B)(g)⊗ ρ(g)

 .

To prove (12) it is enough to show that the matrix inside the last trace operator is positive
semidefinite. To do this, we express it as the square of a Hermitian matrix as follows

1

|GD
1 |

∑
g∈GD

1

(B ∗ B)(g)⊗ ρ(g) =
1

|GD
1 |2

∑
h∈GD

1

∑
g∈GD

1

(
B(h)⊗ ρ(h)

)(
B(h−1g)⊗ ρ(h−1g)

)

=

 1

|GD
1 |

∑
g∈GD

1

B(g)⊗ ρ(g)

2

.
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The matrix inside the last parentheses is Hermitian. Indeed, ∑
g∈GD

1

B(g)⊗ ρ(g)

∗

=
∑
g∈GD

1

B(g)∗ ⊗ ρ(g)∗ =
∑
g∈GD

1

B(g−1)⊗ ρ(g−1),

where the last equality follows from the fact that both B and ρ are skew-symmetric.
Now, let us show (13). We start with the following chain of identities.∣∣∣∣∣∣tr

A(g)

 ∑
i,j∈Nρ

̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣tr
A(g)

 1

|GD
1 |

∑
h∈GD

1

(B ∗ B)(h)χρ(h(a ◦ π))

∣∣∣∣∣∣
=

∣∣∣∣∣∣tr
(A(g)⊗ INρ)

 1

|GD
1 |

∑
h∈GD

1

(B ∗ B)(h)⊗ ρ(h)

(INω ⊗ ρ(a ◦ π)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣tr
 1

|GD
1 |

∑
h∈GD

1

(B ∗ B)(h)⊗ ρ(h)

(INω ⊗ ρ(a ◦ π)
) (

A(g)⊗ INρ

)∣∣∣∣∣∣ .
Both INω ⊗ ρ(a ◦ π) and A(g)⊗ INρ are unitary matrices, and, as shown in the proof of (12),

the matrix 1
|GD

1 |
∑

h∈GD
1
(B ∗ B)(h)⊗ ρ(h) is positive semidefinite. Hence, the last expression

is at most

tr

 1

|GD
1 |

∑
h∈GD

1

(B ∗ B)(h)⊗ ρ(h)

 = tr

 1

|GD
1 |

∑
h∈GD

1

(B ∗ B)(h)χρ(h)

 = tr

∑
i∈Nρ

̂(B ∗ B)(ρi,i)

 ,

as we wanted to show. This completes the proof of the lemma.

Proof of Lemma 3.3. This proof is a direct adaptation of the proof of [EHR04, Lemma 25].
We can rewrite the inequality in the statement as

ξ ≤

∣∣∣∣∣∣∣∣∣∣
Euv


∑

τ∈ĜE
1 ,τ ̸=1,

s,t∈Nτ

∑
ρ∈ĜD

1 ,|ρ|<κ,
i,j∈Nρ

(1− ϵ)|ρ|Ea

[
τs,t(a)ρ

π
i,j(a

−1)
]
tr
(
dimτ dimρ Â(τs,t) ̂(B ∗ B)(ρi,j)

)

∣∣∣∣∣∣∣∣∣∣
.

By Lemma 2.14, the inner expectation in the above term is zero unless τ ∼π ρ. Additionally,
by an averaging argument, there must be indices x, y ∈ Nω such that this term can be bounded
above by

dim2
ω

∣∣∣∣∣∣∣∣∣∣
Euv


∑

ρ∈ĜD
1 ,|ρ|<κ,
i,j∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1,
τ∼πρ,s,t∈Nτ

(1− ϵ)|ρ|⟨τs,t, ρπj,i⟩ dimτ dimρ Âx,y(τs,t) ̂(B ∗ B)y,x(ρi,j)


∣∣∣∣∣∣∣∣∣∣
.
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Here we have used the fact that Ea

[
τs,t(a)ρ

π
i,j(a

−1)
]
= ⟨τs,t, ρπj,i⟩GE since ρπ is unitary. More-

over, by Lemma 2.12, we know that

̂(B ∗ B)y,x(ρi,j) =
∑
z∈Nω

∑
k∈Nρ

B̂y,z(ρi,k)B̂z,x(ρk,j).

Hence, by another averaging argument, there is an index z ∈ Nω such that the above expec-
tation is at most

dim3
ω

∣∣∣∣∣∣∣∣∣∣
Euv


∑

ρ∈ĜD
1 ,|ρ|<κ,

i,j,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1
τ∼πρ,s,t∈Nτ

(1− ϵ)|ρ|⟨τs,t, ρπj,i⟩dimτ dimρ Âx,y(τs,t)B̂y,z(ρi,k)B̂z,x(ρk,j)


∣∣∣∣∣∣∣∣∣∣
.

Putting everything together, squaring both sides, and using Jensen’s inequality we obtain

ξ2

dim6
ω

≤ Euv


∣∣∣∣∣∣∣∣∣∣

∑
ρ∈ĜD

1 ,|ρ|<κ,
i,j,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1
τ∼ρπ ,s,t∈Nτ

(1− ϵ)|ρ|⟨τs,t, ρπj,i⟩dimτ dimρ Âx,y(τs,t)B̂y,z(ρi,k)B̂z,x(ρk,j)

∣∣∣∣∣∣∣∣∣∣

2 .

Applying the Cauchy-Schwartz inequality we obtain

ξ2

dim6
ω

≤ Euv


∑

ρ∈ĜD
1 ,|ρ|<κ,

i,j,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1
τ∼ρπ ,s,t∈Nτ

dimτ dimρ

∣∣∣(1− ϵ)|ρ|⟨τs,t, ρπj,i⟩B̂z,x(ρk,j)
∣∣∣2

×
∑

ρ∈ĜD
1 ,|ρ|<κ,

i,j,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1,
τ∼ρπ ,s,t∈Nτ

dimτ dimρ

∣∣∣Âx,y(τs,t)B̂y,z(ρi,k)
∣∣∣2
 . (14)

Let us bound the first term of this last product. By Plancherel’s Theorem (cfr. Theorem 1.2),∑
τ∈ĜE

1 ,s,t∈Nτ

dimτ

∣∣⟨τs,t, ρπj,i⟩∣∣2 = ∥ρπj,i∥2.

As ρ is a unitary representation, it must hold that
∑

i∈Nρ
∥ρπj,i∥2 = 1 for any j ∈ Nρ. This

way, ∑
ρ∈ĜD

1 ,|ρ|<κ,
i,j,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1,
τ∼πρ,s,t∈Nτ

dimτ dimρ

∣∣∣(1− ϵ)|ρ|⟨τs,t, ρπj,i⟩B̂z,x(ρk,j)
∣∣∣2 ≤

∑
ρ∈ĜD

1 ,|ρ|<κ,
j,k∈Nρ

∑
i∈Nρ

∥ρπj,i∥2
 dimρ

∣∣∣B̂z,x(ρk,j)
∣∣∣2 = ∑

ρ∈ĜD
1 ,|ρ|<κ,

j,k∈Nρ

dimρ

∣∣∣B̂z,x(ρk,j)
∣∣∣2 .
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Using Plancherel’s Theorem we obtain that this quantity is at most ∥Bz,x∥2. This norm must
be at most one because B ranges over unitary matrices. Substituting this back in (14), we
get

ξ2

dim6
ω

≤ Euv


∑

ρ∈ĜD
1 ,|ρ|<κ,

i,j,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1,
τ∼πρ,s,t∈Nτ

dimτ dimρ

∣∣∣Âx,y(τs,t)B̂y,z(ρi,k)
∣∣∣2
 .

Summing over j, and using the fact that |Nρ| ≤ |G1||ρ| ≤ |G1|κ, we obtain

ξ2

dim6
ω |G1|κ

≤ Euv


∑

ρ∈ĜD
1 ,|ρ|<κ,

i,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1,
τ∼πρ,s,t∈Nτ

dimτ dimρ

∣∣∣Âx,y(τs,t)B̂y,z(ρi,k)
∣∣∣2
 .

The facts that τ ̸= 1, |ρ| < κ and τ ∼π ρ together imply that 1 < |τ | ≤ |ρ| < κ. Hence,

ξ2

dim6
ω κ|G1|κ

≤ Euv


∑

ρ∈ĜD
1 ,|ρ|<κ,

i,k∈Nρ

∑
τ∈ĜE

1 ,τ ̸=1,
τ∼πρ,s,t∈Nτ

dimτ dimρ

∣∣∣Âx,y(τs,t)
∣∣∣2 ∣∣∣B̂y,z(ρi,k)

∣∣∣2
|ρ|



= Euv


∑
e∈E

∑
ρ∈ĜD

1 |ρ|<κ,
i,k∈Nρ

∑
τ∈ĜE

1 ,τe ̸=1
τ∼πρ,s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

dimρ

∣∣∣B̂y,z(ρi,k)
∣∣∣2

|ρ|



≤ Euv


∑
e∈E

d∈π−1(e)

∑
ρ∈ĜD

1 ,ρd ̸=1
|ρ|<κ,i,k∈Nρ

∑
τ∈ĜE

1 ,τe ̸=1,
|τ |<κ,s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

dimρ

∣∣∣B̂y,z(ρi,k)
∣∣∣2

|ρ|


To see the last inequality observe that given e ∈ E such that τ e ̸= 1, the fact that τ ∼π ρ
implies that there is at least one d ∈ π−1(e) satisfying ρd ̸= 1. Rearranging the last expression
we obtain

ξ2

dim6
ω κ|G1|κ

≤ Euv


∑
d∈D

∑
ρ∈ĜD

1 ,ρd ̸=1
|ρ|<κ,i,k∈Nρ

∑
τ∈ĜE

1 ,τπ(d) ̸=1,
|τ |<κ,s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

dimρ

∣∣∣B̂y,z(ρi,k)
∣∣∣2

|ρ|

 . (15)

This inequality suggests the following randomised strategy to construct an assignment for
the original instance Σ of Gap Label Cover. Fix indices x, y, z ∈ Nω as described above. Given

a vertex u ∈ U , the assignment du is chosen randomly by picking a representation ρ ∈ ĜD
1 with

probability at least
∑

i,k∈Nρ
dimρ |B̂y,z(ρi,k)|2, which is well-defined by Plancherel’s theorem
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and the fact that ω is unitary, and then picking du uniformly at random among those elements
d ∈ D for which ρd is non-trivial if such d exists, and give up otherwise. Similarly, given a

vertex v ∈ V , the assignment ev is chosen by picking a non-trivial representation τ ∈ Ĝ E
1

with probability at least
∑

s,t∈Nτ
dimτ |Âx,y(τs,t)|2, and then picking ev ∈ E uniformly at

random among those elements e ∈ E for which τ e is non-trivial. This is also well-defined
by Plancherel’s theorem and the fact that ω is unitary, and additionally, note that picking
ev with τ ev non-trivial is always possible since (15) guarantees that there always exists some

non-trivial τ ∈ Ĝ E
1 with |Âx,y(τs,t)| > 0. The probability that this random assignment

satisfies a given constraint u
π−→ v in the GLC instance is at least the joint probability of the

following events: (1) the representations ρ, τ satisfy |ρ|, |τ | < κ, and (2) the chosen element
ev ∈ E satisfies ev = π(du). Because of (15), this probability is at least ξ2κ−1|G1|−κ dim−6

ω .
This strategy can be derandomised to obtain an assignment of Σ satisfying at least the same
fraction of its constraints, proving the result.

4 Algebraic Approach to Max-PCSPs

The (in)approximability of Promise Constraint Satisfaction Problems (PCSPs) has been re-
cently studied extensively in [BBK+24], where the authors considered the class of problems
called valued PCSPs. Valued promise CSPs provide a framework for studying approximation
problems of a joint qualitative and quantitative nature in a systematic way, and include, as
special cases, (non-valued) CSPs as well as their promise variant, valued CSPs, approximabil-
ity of Max-CSPs, (gap variants of) Label Cover problems, and the Unique Games Conjecture.

Following the success of the so-called algebraic approach for CSPs [JCG97, BJK05] and
PCSPs [BBKO21], Barto et al. [BBK+24] studied valued PCSPs from an algebraic viewpoint,
developing a framework for deriving polynomial-time reductions between such problems by
studying the relationship between certain associated algebraic objects called valued minions
of plurimorphisms. These are, loosely, collections of probability distributions over a set of
multi-dimensional symmetries of the corresponding feasibility problem, known as the min-
ion of polymorphisms. The basic tenet of the algebraic approach is that the existence of a
homomorphism between the valued minions of plurimorphisms of two valued PCSPs gives a
polynomial-time reduction between the corresponding computational problems (in the oppo-
site direction).

In this section, we show that the hardness of approximation of promise equations can be
viewed as an instance of a homomorphism from the valued minion of plurimorphism of 3-LIN
to the valued minion of plurimorphism of the Gap Label Cover problem, thus providing an
algebraic viewpoint for the reduction shown in this paper. In the remainder of this section
we introduce the valued PCSP framework and the main algebraic tools to show reductions
between valued PCSPs, broadly following the presentation in [BBK+24]. We then show that
the proof of Theorem 1.3 in fact provides the sufficient conditions for the existence of a
homomorphism between the appropriate valued minions of plurimorphisms. To be precise,
the version of the framework introduced below is a special case of valued PCSPs in which
constraints are restricted to take values from the set {0, 1}. This version models problems
such as Max-CSPs and its promise variant, which will suffice for our purposes. This allows
us to simplify the presentation of some of the tools, particularly due to the fact that for a
{0, 1}-valued relation ϕ of arity N on a set A, the feasibility set of ϕ is the whole of AN ,
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and hence trivially the set of polymorphisms of the feasibility structures associated with a
template (A,B, c, s) is simply the set of multivariate operations from A to B.

Maximum Promise CSPs The class of finite sets is denoted by FinSet. Given a finite set
N , we denote the set of probability distributions on N by ∆N , and the N -ary projection to
n ∈ N by projNn . Furthermore, for sets A and B, we define O(A,B) = {f | AN → B}N∈FinSet.

A (relational) signature σ is finite collection of relation symbols, each of which comes with
an associated finite set called its arity, denoted ar(ϕ) for each symbol ϕ ∈ σ. A σ-structure A
consists of a finite set A, called the universe of A, and a relation ϕA ⊆ Aar(ϕ) for each ϕ ∈ σ,
called the interpretation of ϕ in A.

Let σ be a relational signature. A payoff σ-formula over a finite set of variables X is a
formal expression of the form

Φ =
∑
i∈I

wiϕi(xi)

where I is a finite non-empty set, wi are non-negative rational weights satisfying
∑

i∈I wi = 1,

ϕi ∈ σ, and xi ∈ Xar(ϕi) for all i ∈ I. Given additionally a σ-structure A and a map
h : X → A, the interpretation of Φ in A is the rational-valued function on AX given by

ΦA(h) =
∑
i∈I

wiJhxi ∈ ϕA
i K,

for each h ∈ AX . For c ∈ [0, 1], we say that Φ is c-satisfiable in A if there exists h ∈ AX such
that ΦA(h) ≥ c.

LetA, B be σ-structures and c, s ∈ [0, 1] be rational constants called the completeness and
soundness parameters respectively. The Maximum Promise Constraint Satisfaction Problem
over (A,B, c, s), denoted PCSP(A,B, c, s), is the following problem: given an input payoff
σ-formula Φ over a finite set X, accept if Φ is c-satisfiable in A, and reject if Φ is not
even s-satisfiable in B. Clearly, this problem is well-defined whenever ∃hΦA(h) ≥ c implies
∃hΦB(h) ≥ s for every payoff σ-formula Φ. Quadruples (A,B, c, s) that satisfy this condition
are called templates.

When c = 1, we say that the problem has perfect completeness: the only accepted instances
are those where there exists some assignment h such that hxi ∈ ϕA

i for each i ∈ I.

Remark 4.1. The problem 3-LIN(G1,G2, φ, c, s) studied in this paper can be phrased as
a Maximum Promise CSP. In particular, the relational structures Gφ

1 , Gφ
2 corresponding

to systems of promise equations parametrised by (G1,G2, φ) are constructed as follows. The
universe ofGφ

1 is G1, and similarly the universe ofGφ
2 is G2. For every element g ∈ Dom(φ) and

every triple (i, j, k) ∈ {−1, 1}3, the signature ofGφ
1 andGφ

2 contains a ternary relation symbol
ϕg,(i,j,k), which is interpreted as the set {(x, y, z) ∈ G 3

1 | xiyjzk = g} in Gφ
1 , and as {(x, y, z) ∈

G 3
2 | xiyjzk = φ(g)} in Gφ

2 . Then, 3-LIN(G1,G2, φ, c, s) is precisely PCSP(Gφ
1 ,G

φ
2 , c, s). It

can be easily verified that if (G1,G2, φ) is a template (i.e., there is a group homomorphism
from G1 to G2 that extends φ), and s ≤ c, then (Gφ

1 ,G
φ
2 , c, s) is a template of the Maximum

Promise CSP.
Furthermore, note that GLCD,E(c, s) can also be seen as a Maximum Promise CSP, with

the only caveat that the corresponding relational structure is on a 2-sorted domain. We
omit details here and refer the reader to [BBK+24] for a thorough treatment of multi-sorted
PCSPs.
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Minions Let N,N ′ be finite sets, π : N → N ′ a function known as a minor map, and
f : AN → B. The minor of f given by π, denoted f (π), is the N ′-ary function defined by

f (π)(x) = f(xπ)

for all x ∈ AN ′
. A function minion M on a pair of sets (A,B) is a non-empty subset of

O(A,B) that is closed under taking minors. We denote the set of N -ary functions in M by
M (N).

Let M and M ′ be function minions. A minion homomorphism from M to M ′ is a
collection of functions (ξ(N) : M (N) → M ′(N))N∈FinSet that preserves taking minors, that is,
ξ(N

′)(f (π)) = (ξ(N)(f))(π) for every N,N ′ ∈ FinSet, f ∈ M (N), and π : N → N ′.
In the exact setting, each Promise CSP can be associated to a function minion, called the

minion of polymorphisms of the corresponding template. Intuitively, this minion contains the
higher-dimensional symmetries of the problem that determine its complexity.

Valued minions In the approximation setting, minions are replaced with valued minions,
which are, broadly speaking, collections of probability distributions over multivariate func-
tions from A to B. One peculiarity is that these collections are not indexed by single sets,
but rather by all finite collections of finite sets.

More formally, let M be a function minion and N a finite set. An N -ary weighting of M
is a pair

Ω = (Ωin,Ωout) where Ωin ∈ ∆N, Ωout ∈ ∆M (N).

A valued minion over M is a collection M = (M(N )) indexed by finite families of finite sets
N = (Nj)j∈J such that elements of M(N ) are families (Ωj)j∈J where each Ωj is an Nj-ary
weighting of M .

Let M, M′ be valued minions over function minions M and M ′, respectively. A valued
minion homomorphism M → M′ is a probability distribution Ξ on the set of minion homo-
morphisms M → M ′ such that, for every finite set J , every family of finite sets N = (Nj)j∈J ,
and every (Ωj)j∈J ∈ M(N ), we have (Ξ(Ωj))j∈J ∈ M′(N ), where Ξ(Ωj) = (Ωin

j ,Ξ(Ω
out
j )) and

Ξ(Ωout
j ) is defined naturally as sampling ξ ∼ Ξ, f ∼ Ωout

j , and computing ξ(f).

Polymorphisms and plurimorphisms The specific valued minion associated to a Max-
PCSP template contains those weightings that preserve the approximation factor in the fol-
lowing sense. Let (A,B, c, s) be a Max-PCSP template and M = O(A,B).

• Let κ ∈ Q≥0. An N -ary weighting Ω of M is a κ-polymorphism of (A,B, c, s) if

Ef∼ΩoutϕB(f(M))− s ≥ κ(En∼ΩinϕA(Mn)− c) ∀ϕ ∈ σ, ∀M ∈ Aar(ϕ)×N

where Mn denotes the nth column of M , and f is applied to M row-wise.

• An N -ary weighting Ω of M is a polymorphism of (A,B, c, s) if it is a κ-polymorphism
for some κ ∈ Q≥0.

• A finite family (Ωj)j∈J of weightings of M of arities N = (Nj)j∈J is an N -ary plurimor-
phism of (A,B, c, s) if there exists κ ∈ Q≥0 such that every Ωj is a κ-polymorphism.

The collections of plurimorphisms of (A,B, c, s) is denoted by Plu(A,B, c, s).
In particular, observe that for a Max-PCSP template (A,B, c, s), the collection Plu(A,B, c, s)

forms a valued minion over O(A,B).
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Reductions via homomorphisms The main result from [BBK+24] is the following.

Theorem 4.2 ([BBK+24]). Let (A,B, c, s) and (A′,B′, c′, s′) be Max-PCSP templates such
that the former one has a “reject” instance. If there is a valued minion homomorphism from
Plu(A,B, c, s) to Plu(A′,B′, c′, s′), then PCSP(A′,B′, c′, s′) ≤ PCSP(A,B, c, s).

In particular, if we can find a valued minion homomorphism from Plu(A,B, c, s) to the
valued minion of plurimorphisms of Gap Label Cover, then this guarantees - in all but the
trivial case where all instances are accepted - that PCSP(A,B, c, s) is NP-hard. Finding these
valued minion homomorphisms is not generally straightforward. Nonetheless, an adaptation
of [BBK+24, Theorem 5.8] gives us the following sufficient condition for the existence of a
valued minion homomorphism to Gap Label Cover with perfect completeness.

Theorem 4.3. Let (A,B, c, s) be a Max-PCSP template, M = O(A,B), D and E finite
disjoint sets, and α ∈ R. Suppose that there exist

• mappings ΛD : M (D) → ∆D and ΛE : M (E) → ∆E,

• for every π : D → E, a payoff formula Φπ over the set of variables AD ∪AE,

such that for every π : D → E

1. ΦA
π (projDd , proj

E
π(d)) ≥ c for every d ∈ D, and

2. for every d ∈ DN , e ∈ EN , and N -ary polymorphism Ω of (A,B, c, s), it holds that

Ef∼ΩOut

[
ΦB
π (f

(d), f (e))
]
≥ s implies Ef∼ΩOutEd∼ΛD(f (d))

e∼ΛE(f (e))

[π(d, e)] ≥ α.

Then, there exists a valued minion homomorphism from Plu(A,B, c, s) to Plu(GLCD,E(1, α)).

The idea behind this construction is roughly as follows: the stochastic map ΛD : M (D) →
∆D is used to define a sampling procedure over maps λD : M (D) → D, and similarly ΛE

is used to define an independent sampling procedure over maps λE : M (E) → E. Each
pair of such maps (λD, λE) can be associated to a minion homomorphism ξλD,λE

: M →
O(D,D) × O(E,E) in a natural way (see, e.g., [BBKO21, Lemma 4.4]), and the valued
minion homomorphism from Theorem 4.3 samples each homomorphism ξλD,λE

according to
the joint probability of the maps λD and λE . Conditions 1. and 2. guarantee that this
sampling procedure does in fact take plurimorphisms of (A,B, c, s) to plurimorphisms of
GLCD,E(1, α).

The remainder of this section is dedicated to showing that (Gφ
1 ,G

φ
2 , 1− ϵ, 1/|Im(φ)|+ δ)

satisfies the conditions of Theorem 4.3, where α is as in Theorem 1.7. That is:

Corollary 4.4. There is a valued minion homomorphism from Plu(Gφ
1 ,G

φ
2 , 1−ϵ, 1/|Im(φ)|+

δ) to Plu(GLCD,E(1, α)), where α = δ2/(4κ|G1|4|G2|κ) and κ = ⌈(log2 δ − 2)/ log2(1− ϵ)⌉.

Proof. The payoff formulas Φπ for each π : D → E are defined as in (1). That is, using the
notation defined in Remark 4.1,

Φπ = Ea,b,ν
s1,s2

ϕga,(1,s1,s2)(a
†,bs1 , cs2),
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where the expectation for each π is taken according to the distribution described in Figure 1,
and as usual we denote c = b−1(a ◦ π)−1ν. Then, the proof of Theorem 1.6 tells us exactly
that Item 1. is satisfied for c = 1− ϵ.

To show that Item 2. is satisfied, we need to define the mappings ΛD, ΛE . Let π :
D → E, d ∈ DN , e ∈ EN , and Ω be an N -ary polymorphism of (A,B, c, s) such that

Ef∼ΩOutΦ
Gφ

2
π (f (d), f (e)) ≥ s. By the same argument as in Section 3.2, there is a representation

ω ∈ Ĝ2 satisfying∣∣∣∣Ef∼ΩOutEa,b,ν
s1,s2

[
χω

(
(f (e))φ(a)f

(d)(bs1)s1f (d)(cs2)s2)
)]∣∣∣∣ ≥ dimω δ + ⟨χω, χRG2,H2

⟩.

Define
A(a) := ω ◦ (f (e))φ(a), B(b) := Es[((ω ◦ f (d))(bs))s], (16)

and notice that A and B now depend on the hidden parameter f , but not on variables u and
v.

With these definitions, it is easy to see that the proofs of Lemmas 3.1 and 3.2 can be
adapted to obtain that

∣∣∣∣∣∣∣Ef∼ΩOutEa

tr

 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

×

 ∑
ρ∈ĜD

1 ,|ρ|<κ

∑
i,j∈Nρ

dimρ(1− ϵ)|ρ| ̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1)




∣∣∣∣∣∣∣ ≥ (dimω δ)/2.

Then, we proceed as in the proof of Lemma 3.3 to show that there exist indices x, y, z ∈ Nω

which satisfy

δ2

4 dim4
ω κ|G1|κ

≤ Ef∼ΩOut


∑
d∈D

∑
ρ∈ĜD

1 ,ρd ̸=1
|ρ|<κ,i,k∈Nρ

∑
τ∈ĜE

1 ,τπ(d) ̸=1,
|τ |<κ,s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

dimρ

∣∣∣B̂y,z(ρi,k)
∣∣∣2

|ρ|

 .

(17)

Then, for these choices of ω ∈ Ĝ2 and x, y, z ∈ Nω, the randomised strategy described in
the proof of Lemma 3.3 gives a pair of maps ΛD : M (D) → ∆D and ΛE : M (E) → ∆E such
that sampling f according to ΩOut and d ∈ D, e ∈ E according to ΛD(f

(d)) and ΛE(f
(e))

respectively gives an expected payoff that is bounded below by (17). That is,

δ

4 dim4
ω κ|G1|κ

≤ Ef∼ΩOutEd∼ΛD(f (d))

e∼ΛE(f (e))

π(d, e).

Using dimω ≤ |G2| gives the desired result.
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A Proof of Theorem 1.5

Theorem 1.5. Let (G1,G2, φ) be a non-cubic template and 0 < s ≤ c < 1. Then, 3-LIN(G1,G2, φ, c, s)
is tractable if s/c ≤ 1/|Im(φ)| and NP-hard otherwise.

For the tractability part, if s/c ≤ 1/|Im(φ)| then the following algorithm works: Count
the number equations that are unsatisfiable over G2. If the fraction of unsatisfiable equations
is at most 1 − c, accept. In this case, the random assignment over Im(φ) satisfies at least a
c/|Im(φ)|-fraction of the equations in G2. Otherwise, reject.

For the hardness part, let 0 < s ≤ c < 1 be such that s/c > 1/|Im(φ)|, and let ϵ > 0 be a ra-
tional number such that c < 1− ϵ < s|Im(φ)|. Then, the NP-hardness of 3-LIN(G1,G2, φ, c, s)
follows from the observation that

3-LIN(G1,G2, φ, c/(1− ϵ), s/(1− ϵ)) ≤p 3-LIN(G1,G2, φ, c, s).

The reduction is as follows. Given any instance of the first problem, we construct an instance
of the second problem by adding an unsatisfiable equation with weight ϵ

1−ϵ and normalising all
weights. The result then follows from the NP-hardness of 3-LIN(G1,G2, φ, c/(1−ϵ), s/(1−ϵ)),
which in turn follows from Theorem 1.3.

B Proofs from Section 2

In this section, we will give proofs of results stated in Section 2. For the reader’s convenience,
the results are restated below.

Lemma 2.4. Let F : G → CN×N be a map, γ ∈ Ĝ , and g ∈ G . Then∑
i,j∈Nγ

F̂ (γi,j)γi,j(g) =
1

|G |
∑
h∈G

F (h)χγ(h
−1g).

Proof of Lemma 2.4. The following holds.∑
i,j∈Nγ

F̂ (γi,j)γi,j(g) =
∑

i,j∈Nγ

1

|G |
∑
h∈G

F (h)γi,j(h)γi,j(g) =
1

|G |
∑
h∈G

F (h)
∑

i,j∈Nγ

γi,j(h)γi,j(g)

=
1

|G |
∑
h∈G

F (h)
∑

i,j∈Nγ

γj,i(h
−1)γi,j(g) =

1

|G |
∑
h∈G

F (h)χγ(h
−1g).

Here the third equality uses the fact that γi,j(h) = γj,i(h
−1) because γ is a homomorphism

and γ(h) is a unitary matrix. The last equality uses again the fact that γ is a homomorphism,
so γ(h−1g) = γ(h−1)γ(g), and

χγ(h
−1g) =

∑
i∈Nγ

γi,i(h
−1g) =

∑
i,j∈Nγ

γi,j(h
−1)γj,i(g).

Lemma 2.9. Let H ≤ G be groups, and let ρ ∈ Ĝ . Then the multiplicity of ρ in RG ,H is
the same as the multiplicity of the trivial representation in ρ|H .
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Proof of Lemma 2.9. Let H ≤ G be groups, and let β ∈ Ĥ . The representation induced by
β on G , denoted α = IndG

H β, is defined as follows. Let Nα = Nβ × (H \G ). Fix a set of
representatives {g1, . . . gk} of H \G . The matrix entries of α are given by

α(i,H gr),(j,H gs)(g) =

{
0 if grgg

−1
s ̸∈ H , and

β(grgg
−1
s ) otherwise

for each (i,H gr), (j,H gs) ∈ Nα and g ∈ G . We have the following claim.

Claim. Let H ≤ G . Then RG ,H is equivalent to the representation induced on G by the
trivial representation of H .

Let α = IndG
H 1. Then the index set of α is {1}×H \G , which can be naturally identified

with H \G . Under this identification, the matrix entries of α and RG ,H are the same, and
the claim holds. Lemma 2.9 then follows from this claim and the following result.7

Theorem B.1 (Frobenius Reciprocity Law). Let H ≤ G be groups, let α be a representation
of G , and β a representation of H . Then,

⟨α, IndG
H β⟩G = ⟨α|H , β⟩H .

Indeed, let ρ ∈ Ĝ . Then, by the Frobenius Reciprocity Law, if we let α = ρ and β be the
trivial representation we obtain

⟨ρ,RG ,H ⟩G = ⟨ρ|H , 1⟩H .

By Lemma 2.8, the first term of the equality is the multiplicity of ρ in RG ,H , and the second
is the multiplicity of 1 in ρ|H . This completes the proof of Lemma 2.9.

Lemma 2.11. Let H ≤ G be groups. Then∑
ρ∈Ĝ

dimρ⟨χρ, χRG ,H
⟩ = |G |

|H |
.

Proof of Lemma 2.11. By Lemma 2.10, we know that RG ≃
⊕

ρ∈Ĝ
dimρ ρ, so

∑
ρ∈Ĝ

dimρ⟨χρ, χRG ,H
⟩ = ⟨χRG

, χRG ,H
⟩ = 1

|G |
χRG

(1G )χRG ,H
(1G ) =

|G |
|H |

.

Here the second inequality uses that χRG
(g) = 0 for every g ̸= 1G .

Lemma 2.12. Let F,G : G → CN×N , γ ∈ Ĝ . Let x, y ∈ N , i, j ∈ Nγ. Then,

̂(F ∗G)x,y(γi,j) =
∑
z∈N

∑
k∈Nγ

F̂x,z(γi,k)Ĝz,y(γk,j).

7The formulation in [Ter99] is slightly different. To see that it is equivalent to ours, use [Ter99, Proposition
3.2] and the fact that we defined the inner product over L2(G ) with an additional normalising factor of 1

|G | .
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Proof of Lemma 2.12. By definition,

̂(F ∗G)x,y(γi,j) =
1

|G |2
∑
h,g∈G

(F (h)G(h−1g))x,yγi,j(g)

=
1

|G |2
∑
h,g∈G

(∑
z∈N

Fx,z(h)Gz,y(h
−1g)

)∑
k∈Nρ

γi,k(h)γk,j(h−1g)


=

∑
z∈N,k∈Nρ

(
1

|G |
∑
h∈G

Fx,z(h)γi,k(h)

) 1

|G |
∑
g∈G

Gz,y(g)γk,j(g)


=

∑
z∈N,k∈Nγ

F̂x,z(γi,k)Ĝz,y(γk,j).

Lemma 2.14. Let G be a group, E,D finite sets, π : D → E a map, and τ ∈ Ĝ E , ρ ∈ ĜD

representations. Then

1. τ ∼π ρ implies that |τ | ≤ |ρ|.

2. τ ̸∼π ρ implies that ⟨τs,t, ρπi,j⟩GE = 0 for all s, t ∈ Nτ , i, j ∈ Nρ.

Proof of Lemma 2.14. The first statement is straightforward. Let us prove the second. Let
s = (se)e∈E , t = (te)e∈E ∈ Nτ , and i = (id)d∈D, j = (jd)d∈D ∈ Nρ. Then

⟨τs,t, ρπi,j⟩GE =
1

|G E |
∑
g∈GE

τs,t(g)ρπi,j(g) =
1

|G E |
∑
g∈GE

∏
e∈E

τ ese,te(g(e))

 ∏
d∈π−1(e)

ρdid,jd(g(e))


=
∏
e∈E

1

|G |
∑
g∈G

τ ese,te(g)

 ∏
d∈π−1(e)

ρdid,jd(g)

 =
∏
e∈E

⟨τ ese,te ,⊗d∈π−1(e)ρ
d
id,jd

⟩G .

As τ ̸∼π ρ, there must be an index e ∈ E for which τ e is non-trivial, but ρd is trivial
for all d ∈ π−1(e). By Theorem 1.2, ⟨τ ese,te ,⊗d∈π−1(e)ρ

d
id,jd

⟩G = 0 for this choice of e, so
⟨τs,t, ρπi,j⟩GE = 0, as we wanted to prove.

Lemma 2.15. Let G be a finite group, D a finite set, and 0 < ϵ < 1 a real number. Let
ν = (νd)d∈D be a random element from GD chosen as follows. Independently for each d ∈ D,
the element νd equals 1G with probability 1 − ϵ, and is picked uniformly at random from G

otherwise. Let F : GD → C and define H(a) := Eν [F (a · ν)]. Then, for each ρ ∈ ĜD and
i, j ∈ Nρ, we have

Ĥ(ρi,j) = (1− ϵ)|ρ|F̂ (ρi,j).

Proof of Lemma 2.15. The following chain of identities holds

1

|GD|
∑
a∈GD

Eν [F (a · ν)] ρ(a) = Eν

 1

|GD|
∑
a∈GD

F (a · ν)ρ(a)

 = Eν

 1

|GD|
∑
a∈GD

F (a)ρ(aν−1)


= Eν

 1

|GD|
∑
a∈GD

F (a) ρ(a) ρ(ν−1)

 =
1

|GD|
∑
a∈GD

F (a)ρ(a)Eν [ρ(ν−1)].
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The result now follows from the fact that Eν [ρ(ν)
t] = (1−ϵ)INρ . Let us show this identity.

Since ρ ∈ ĜD we have that

Eνρ(ν) = Eν

[
⊗d∈Dρ

d(νd)
]
= ⊗d∈DEν(d)ρ

d(νd).

Clearly if ρd is trivial, ρd(νd) = IN
ρd
, regardless of the value of νd. In all other cases, by

applying corollary 2.3, we get that

Eνd
ρd(νd) = (1− ϵ)ρd(1G ) + ϵEg∈G ρ

d(g) = (1− ϵ)Idim
ρd
.

Putting this all together, we get that

Eνρ(ν) = (1− ϵ)|ρ| ⊗d∈D Idim
ρd

= (1− ϵ)|ρ|Idimρ .

Similarly, we have that Eν [ρ(ν−1)] = Eν [ρ(ν)
t] = (1− ϵ)Idimρ , completing the proof.
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